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Abstract. Simultaneous grading of Lie algebras and their representation spaces is used to
develop a new theory of grading preserving contractions of representations of all Lie
algebras admitting the chosen grading. The theory is completely different from the tradi-
tional ways of contracting representations. The graded contractions fall naturally into two
classes: discrete and continuous ones related respectively to 2-cocycles and coboundaries
of the grading group.

1. Introduction

Contractions of Lie algebras arise as a natural way of passing from one group of
symmetries to another similar, but otherwise not directly related group of symmetries.
In the traditional approach a contraction of a Lie algebra is the continuous limit of a
parametrized family of isomorphic Lie algebras. There is a considerable body of
literature on this subject (for excellent expositions see [1-3]) from which it is apparent
that the main obstacles to a satisfactory theory are twofold. First, in its full generality
the study of all continuous deformations of the structure constants of a Lie algebra
[4-6] offers such a bewildering array of possibilities that one cannot hope to obtain
precise and practical information except in the simplest cases. Second, to be useful,
contractions of Lie algebras need to be accompanied by contractions of their representa-
tions, a task that has not proved to be at all easy [7-14].

In [15] it was shown that by working within the context of graded Lie algebras a
very straightforward approach to contractions can be made, which is at once general
enough to contain all the well known contractions as well as infinitely many others
and, at the same time, sufficiently constrained to allow a complete classification once
a grading group has been specified.

In this paper we show two things:

(1) This graded contraction process is funciorial and depends on the grading group
G rather than on the details of structure (for instance, finite or infinite dimensional)
of the Lie algebra itself. The contractions are classified by certain weak cohomotogy
classes of G with coefficients in the ground field K and the contractions that fall within
the traditional limit process correspond to those cohomology classes that lie in the
closure of the coboundary classes.

(2) By considering along with the graded Lie algebras their compatibly graded
representations, we obtain a theory of contractions of representations that contains
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the Lie algebra contractions as the special case for the adjoint representation. Our
theory is completely different from the traditional approach to contractions of rep-
resentations [7-141].

The idea of making the study of gradings the backbone of a general approach to
Lie theory was apparently put forward only recently [16]. This article can be considered
as another example of how fruitful such an approach can be (see also [15-20]).

In section 2, to exemplify what is to follow, we consider the case of Z,-graded
contractions of representations of general Lie algebras over C. Here all the computations
are transparent and easy to perform, but nevertheless, the outcome of the representation
contractions summarized in table 1 is new.

In section 3 we identify the parameters of the Lie algebra contractions as the values
of 2-cocycles of the grading group in a central extension of the group to a semigroup.

In section 4 the category S-Lie( K) of Lie algebras over K with a grading given
by an Abelian semigroup S is introduced as well as the contraction functor T, acting
in S-Lie(K). Discrete and continuous contractions are then related respectively to
2-cocycles and coboundaries of S.

In section 5 we study the contractions of representations which are graded in a
way compatible with the grading of Lie algebras.

In section 6 we consider the cyclic groups Z,, as the grading groups. All the graded
contractions of representations of Z,-graded Lie algebras are classified.

In section 7 we show how to compare the contraction of the tensor product of two
representations with the tensor product of their contractions. In general, these are
quite different and the process shows how we can infer information on the one from
the other,

2. Contractions of Z,-graded representations of Lie algebras

As an illustration and motivation of the general procedure described subsequently, we
devote this section to the simplest case, where all the constructions can be made in a
straightforward and explicit way, First let us recall the Z,- graded contractions following
[15]. We consider any Lie algebra L of finite or infinite dimension which is graded by
the cyclic group Z, of two elements. Thus we have

L=L0® Ll (2'1)
0#[L, Ll< L ik, j+k (mod 2). (2.2)

Note that we have chosen to consider the generic case where no commutator vanishes
identically in (2.2). More precisely, we write 0% [L;, L,] if there are some elements
xe L, and ye L, such that 0= [x, y].

The most general contraction

L->L* {2.3)

of L that preserves the Z,-grading is described in terms of the commutators (2.2) of
L (before the contraction) and the matrix & = (&) € C**? of contraction parameters
introduced as follows:

[x, ¥). = gulx, ¥] forxe L;, ye L,. 24
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As a shorthand we will usually write expressions like (2.4) in the form
[L;, L) = el L, L)< epliig. (2.4)

Here the subscript & denotes the contracted commutator.

The Lie algebra L and its contraction L® are isomorphic as linear spaces, only the
commutation relations in L are modified by (2.4). In order that the result of the
contraction L® be a Lie algebra, the contraction parameters must satisfy antisymmetry
and the Jacobi identity. This amounts in case (2.2) to the requirements

= — 2 =
Epc = Eyy Ego€or = Eqy EonEi1 = Eg By - (2.5)

The latter two equations can be expressed in a more compact form
Ek€ivkm = ExmEjkt+m- (2-6)

If we do not assume the generic case of (2.2} then one or more of the eguations (2.5)
may be unnecessary. For further discussion of non-generic cases see [15].
The equations (2.5) are solved trivially either by

£= (: :) (no contraction) (2.7)
or by
0 0
= i ). 2.
£ (0 0) (Abelian L) (2.8)

The non-trivial contractions are given by the remaining solutions of (2.5). These are

s=(: ;) (g (1)) and ((1) (())) (2.9)

The first two solutions (2.9) of (2.6) can be obtained by a continuous change of ¢
starting from (2.7) without ever violating (2.5): they are continuous contractions of L.
The last one, £ =y §), is a discrete contraction of L.

Suppose that the action of a Z,-graded L splits an L-module V into the direct sum

V=V,8V, (2.10)
where the subspaces V, j=0, 1, are defined by the grading property
0= LV, Viim j, m, j+m (mod 2). (2.11)

As in (2.2) we assume the generic situation.
It is instructive to write V and LV as follows

V=(V°) LV~—-(L° L,)(V0)=(L0VO+L1VI)
v, L, - Ly/\V, L. V,+ L,V
thus making the graded structores explicit.
We would like V to become a module for L®. This imposes a modification on the
action of L on V. In the same way as we did in (2.4) for the adjoint representation,

we introducwe new contraction parameters i;,. We denote the contracted action of L
on V by L - V. Then we have

¥
(Ljvm)w = Lj ‘ Vm = l;’ij_‘i‘/m (2.12)
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or, equivalently we write

g LO Ll) Y ( Vo)
Liv= :
(Ln L, Vi

=(¢00L0 t!’lllfl)("{’()) =(¢00LOVO+¢HL1 Vl)
'!IIOLI tl’()l-L(l vl [},’IDLI V0+¢01L0V1 ’

In particular, for the adjoint action of L® on itself, we have = £ and (2.13) becomes
(3.10) of [15]. Note that in general i, # ;.
The representation defining relations

(2.13)

[L;, L)|m)y= LiLy|m)— L Lim)< L |m) m)e V,,,m=0,1 (2.14)

before a contraction L- L*, and

W
[Lj, Lk]e ‘ |m) = wkm'f}j,k+mlg'Lk;m> - lffjm‘»"k,HmLijlm)
S eulliekmbylm) (2.15)

after the contraction, must hold simultaneously. Thus we arrive at the equations for
 defining the action of L® in V:

Enctlyrim = WiemWikrm = WimWk jom {2.16)

where the subscripts are read modulo 2 in the Z, case considered here. In particular,
for the adjoint representation one has ¢ = ¢, and equations {(2.16) coincide with (2.6).

The action of L® on V is thus determined by a pair of matrices ¢ and ¢ in C¥%

There are two obvious solutions of (2.16): the trivial one ¢ = (#,.) = (0} which we
disregard, and = ¢, which is exemplified by the adjoint representation. In the latter
case we find for i the solutions given in (2.9). A complete list of non-trivial solutions
y for each e is found in table 1.

Note that in the case of the trivial contraction (2.7) of L the system {2.16} of
equations for ¥ has only trivial solutions:

_(1 1) . (0 0)
v={1 an A

Example 1. Consider an example of the simple Lie algebra sl{3,C) and its natural
representation (190) of dimension 3. We denote by a and B the simple roots. The
standard basis of the algebra is given by the generators of the root spaces e,, f., €a,
fs and their commutators

ht:r:[ea!ﬂr] hﬂz[eﬂa.fﬁ]

(2.17)
ea-+3=[ezn e.B] jl;+13=[fasj:ﬂ]-
Consider the following Z,-grading of si(3, C)
Ly=Ch,+Chg+Ce, +Cf,
’ g g (2.18)

L] =Cea +C_f5 +Cea+3 +Cfu+,9
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Table 1. Non-trivial Z,-graded contractions of representations. The results are presented
in the format of equation (2.13).

(i (1)) ! (II:‘: fo)(:?)=(1.,vl::—vzov,) eV
a5 2=
s (5 )6)-G)
v (50
13 (g fo) ( ff) - (L.,Ovl)

G m GO e
12 (f. g)(:?)=(movu)

o m (5 0=
we (5 O)(0)-(%) e
ms (0 ) =(eow)
ms (G )()-(%)
ms (2 (1)=()

where C stands for an arbitrary complex coefficient. Then one can verify directly that

[Lo, LJ=Ch,+Ce,+Cf. < Ly

[Le, Li]= L, (2.19)

(L, Li]= Le.

Consequently the grading is generic.
The representation space V,

V=Cl|1,0+Cj-1, 1)+CJ0, —~1) (2.20)
is spanned by the weight vectors |1, 0), |—1, 1), {0, —1). The graded action of sk3,C)
splits V into two subspaces V, and V, defined by

LoVo=V, LVv,=V, L Vo=V, L.V,=V, (2.21)
where

'V0=C|1,0)+C|—1, 1) v, =C|0, -1}, (2.22)
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In this very simple example it is equally easy to write the relations (2.21) in a
matrix form. One has

a b 0 X ax+ by
LoVQﬁ ¢ d 0 yYi= Cx+dy

0 0 —a-d}\0 0

a b 0 0 0
LOV]=> ¢ d 0 0= 0

0 0 —a-djf \z —(a+d)z

0 0 e\ /x 0

g h 0/1\0 gx+hy

0 0 e\/0 ez
Lvi={0 0 filo]=]|rf

g h 0/\z 0

a b cdxy zecC.

Let us now consider the contractions of L with £ = (3 ). The entries L.1-1.5 of table
1 are the contractions of the representations in this case. The matrix representation
of the operations (2.23) can be substituted into the column L" V of table 1 in order
to have the contracted algebra and its action on V written in a matrix form. Thus for
example, for 1.1 we get

a b 0 0 0 0 x
¢ d 0 00 0 ¥
va_(L0 0)(‘%)_ 0 0 —a—-d 0 0 0 0
L Ly\vy/ o o e a b 0 0
00 f ¢c d 0 0
g h 0 0 ¢ —a-—df\z
Without loss of generality this can be rewritten as
a b 0 x ax+ by
Lv=le a 0o |ly|= ex+dy : (2.24)
g h —a-df\:z gx+hv—(a+d)z
Similarly for 1.2 of table 1, we would find
v a b e X ax+by+ez
L-V=|le¢ d f y|={ ex+dy+fz]|. (2.25)
0 0 —a-~df\z —(a+d)z

For representations of higher dimensions it is not practical to write the matrices
explicitly. It suffices to describe the subspaces ¥V, and V, and to use table 1.
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This example requires a comment. Here the grading of sl(3, C) and V is the result of
the action of a cyclic subgroup of SU(3) = SL(3, C), which is generated by an element
g of the SU(3)-conjugacy class [101] (for properties and further details of these
notations see [21] and [22]). The element g acts on irreducible representations of
sl(3, C) with eigenvalues +1 (representations of congruence class 0) and ++v~1 (rep-
resentation of congruence classes 1 and 2). Having considered in our example a single
irreducible representation, we could simplify the example by using si(3,C)=L,@L,
and V=V,@ V, for what should have been sl{3,C)=L,® L, and V=V,@ V, (sub-
scripts mod 4). In general, when tensor products of representations are considered
(section 7), such a simplification would lead to inconsistencies in the grading.

3. Semigroups and 2-cocycles

Our theory of contractions is based on a generalization of the theory of 2-cocycles as
they appear in group cohomology and particularly in the theory of central extensions
of groups.

Briefly, if G is a group, then a central extension of G by an Abelian group K is
a group & whose centre contains K and for which there is a surjective homomorphism
m:G > G whose kernel is K. Given such a central extension let us take any section
a: G- G, that is a map satisfying 7+ e =ids. Given any g, he G,

a(g)a(h)a(gh)™ S 1.
So we introduce

egn = a(g)a(h)a(gh) e K (3.1)
defining a map

e:GxG->K (g, h)— g, (3.2)
for which we have

egna(gh)=a(g)a(h)}. (3.3)

From a((gh)k) = a{g(hk)) we obtain at once that
£y hEghk = €g hkEh k- (3.4)

These equations differ from (2.6) in that there we are treating the Abelian grading
group multiplicatively as opposed to the additive interpretation there.

A mapping (3.2) satisfying (3.4} is a 2-cocycle on G with values in K. Conversely,
given such a map we can construct a central extension G of G by K setting

G°=GxK {as a set) (3.5
and defining multiplication by
(g a)(h, b)=(gh, g, nab) (3.6)
and the projection
7.:6-G  (ga)—g (3.7)
The multiplication is associative by (3.4). It is easy to see that 51 g-eg, is an
element ¢ of K independent of g and (1, e ') is the identity of Gt and (g™, aa™"

is the inverse of (g, a).
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Now let G be any Abelian group and let X be a field treated as a monoid under
multiplication, The non-zero elements of K are denoted by K™. (Much of what we
are going to say would work for any group G, not necessarily Abelian, and any
commutative monoid.) A weak 2-cocycle on G with values in the monoid X is a map
(3.2) satisfying (3.4). We denote the set of weak 2-cocycles by C*G, K). Given
= C*(G, K) we construct Ganda multiplication on it by (3.5) and (3.6). This makes
G*into a semigroup. Notice that

G =GiuGr (3.8)
where
Gi=Gx{0} Ge=GxK*

and G5 is a subsemigroup of G° isomorphic to G. If € only takes values in K™ then
¢ is called regular and it is clearly a 2-cocycle on G with coefficients in K* and G2,
is the corresponding extension of G by K™. However, from the point of view of our
theory of contractions the interest lies in the cocycles that are not regular.

If £, &'e CG, K) then their product

ee':GXG-»K (ES,)&;. Heg,,,eg'k (3.9)

is also in C*(G, K) and thus C%(G, K) is a commutative semigroup.
Suppose that £€ C*(G, K) and

G —> G
is the corresponding extension. Further suppose that

a:G-G* zg— (g a;) a, e K™
is some section. Then analogously to (3.3), computing a{gh) and a{g)u(h),

€ g, hgh = EgnTgn (3.10)
s0 we have a new weak 2-cocycle

a,a, .
S;’h = Eg'p,'_x""'- (311)
ag;,

A 1-cochain on G is a map
a:G-K. (3.12)
It is regular if a(G)< K*. If a is regular then we can define da € C¥G, K) by
da,, = aa,a,,. (3.13)

The set of 2-cocycles of this type form a subgroup B G, K) of C*(G, K).
If e CYG, K) and a is a regular 1-cochain then, with £":= ¢ da, we have an
isomorphism

0:G">G" over G (3.14)
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that is
G2 6
G =——= G
given by
L3
(gs C) _— (gs ClgC).
In fact,

e((g c)(g, N =¢lgg ey pcc’) = p(gg', Ay 64 g0 zgcC’)
=p(gg’, a,a, €, ,cc’) = @{(g, c))e((g, ). (3.15)

The import of (3.11) and (3.14) is that multiplying a cocycle £ by an element of
B*G, K) is equivalent to choosing a different section of G*. In the examples we make
a free use of this in classifying cocycles.
More formally, we define an equivalence relation ~ on C? by

g'~¢ if and only if ¢'=¢ da (3.16)
for some regular 1-cochain a. It is easy to see that

£~ & E|~ ELTDEE] ~ EE)5. (3.17)
Thus we may form the quotient semigroup

H*(G K)=(C¥G,K)/ ~). (3.18)

We are primarily interested in H*(G, K). R

In spite of appearances the theory of semigroup extensions G* is considerably
more complex than the corresponding theory of group extensions. For example, ée
need not have an identity element and the subgroup Go, which is rather like a
‘sink’, has no counterpart in group theory.

Lemma. H = G{ is characterized in G* by the following properties:
(i) =, | y is an isomorphism onto G;
(ii) HG*=H.

Proof. Clearly Go satisfies (i) and (ii). Conversely let H satisfy (1) and (ii}). Then from
(i} each heHis uniquely expresmble as (h, a(h}) where h= Tr,_,(h) and a(h) is some
element of K. But for (g, c)e GS

(h, a(m))(g, c) = (hg, &, a(h)c) = (hg, alhg))

by (ii). Thus a(hg) = e,,a(h)c independently of c€ K. Thus a(hg)=0. Setting g =1
gives a(h) =0 so (h, a(h)) e G§. |

in the special case that K =R or C we may topologize C*(G, K) using the metric

le—=ell= sup |egn—egall-
(ghle GxG

Evidently C? is a closed set.
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We say that
ce C?is a limit cocycle or Wigner-Innii cycle (3.19)

if ee B2 (the closure of B? in C?); £ is a non-trivial limit cycle if e € (Ei\Bz).

Proposition. Suppose that G is a finite group of order N and

g=1lim '™ g e B*

H-—>a0

is a non-trivial limit cocycle. Then ¢ is not regular.

Proof. We write e =a%"a}"/aly, g, he G. If lim,., al” =4, #0 exists for each
g€ G then evidently &, , = @4,/ a@,, and e € B

Suppose that £ is regular. With h =1 we obtain 0#¢,,=lim,.. a\". Let g G
have order k. Then for some o # 0

{n) {n), (n}

k—
Eggfgg®- + Egg"! > o

n-o0

and hence
(mglm  glm (n) () (1) (r)yk
ag ay" ay ag’a (ay") 20
ey (g) Y ) B o ¢
a,: a, a; a; -

and so B, =lim, .o (ay" )" #0 exists.
Let ¥, be any fixed kth-root of B, for each g, and let Uy be the group of Nth
roots of 1 in K. Then there is a map
feiZi» Uy
so that
{f(mya '}, = 7,

Since G and Uy are finite there is an infinite subsequence { fg(n)ai;’)},,E s on which
f.(n)=F, is independent of n. Thus { fyai"}..s converges to ¥,.

Now
7al Faim
{fg fha } fgfh YgYh
fgha(n) ne§ fgh Yeh
Thus e, = d,d,/ d,, where @;:= f;'v,, and therefore ¢ is trivial. O

Up until now we have not required that our extension semigroups GE be commutative.
In the sequel we will wish this to be true. This amounts to the requirement

S

Egh = Eng foralig heG. (3.20
The set of 2-cocycles of this form is denoted by C3(G, K). We clearly have B*c
C3(G, K) and hence a subsemigroup

H%(G, K)=(Ci(G, K)/ ~)= H(G, K). (3.21)
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4. Contractions of Lie algebras

Let § be a commutative semigroup. We let S-Lie{K) denote the category of all Lie
algebras over K that are graded by S, namely

Les-Lie(K)&L=@ L,

for some subspaces L, of L and
[LS: Lr] € Lsr

with morphisms being Lie algebra homomorphisms that preserve the grading (i.e. for
L, L'e S-Lie{K), ¢:L- L’ should satisfy ¢L < L!). It was shown in [16] that for a
simple Lie algebra the grading semigroup is a group.

Let G be an Abelian group and let £ € C3(G, K). We define a functor I', on
G-Lie(KX) as follows: for Le G-Lie(K), L*:=T",(L) is the Lie algebra with

(i) vector space structure equal to L

(ii) multiplication defined by L

[xs y]e=‘Eg,h[x: y] g:hEGstLgsyELh' (4'1)

The skew symmetry and the Jacobi identity are immediate consequences of c€
Ci(G, K). It is clear that if L, L'e G-Lie(K) and ¢: L~ L’ is a homomorphism then
there is a canonical homomorphism

F.(p):L*> L™ {4.2)

Remark. The requirement that e C3(G, K) is, from a generic point of view, a
necessary condition for (4.1) to work.

Indeed, let £: G x G- K be an arbitrary map and use (4.1) to construct an algebra
L* from L. Suppose that L is a Lie algebra. Then for xe L,,ye L,, ze L, we have

Eg,h[x) y]=[xs }’]e=‘[}’, x]e = _Eh‘g[y) x] (43)
and
g min i X% [V, Z))+ Ensgi g, [2, 1]+ €4 grEenl 2, [x, y]1=0. (4.4)

If we assume that [x, y]# 0 and the pair{x, [y, z]] and {y, [z, x1] are linearly indepen-
dent then (3.4) and (3.20) follow and e e C3(G, K).

If & ' C3(G, K) and &'~ ¢ then the functors I', and I’ are naturally equivalent,
i.e. for each L e G-Lie(K) there is an isomorphism

pr:Lo(L)=T. (L) (4.5)
so that whenever ¢ : L—> L' is an isomorphism we have

I,(L) ——T,(L)
F,.(w)l ll’,(w (4.6)

L) —25T.(L)
For by assumption £’ = e da for some regular 1-cocycle a. The map u, defined by
x> ax for all xe L,, g s G, works:
mollx y]e) = uilegalx, v]) = aguegnlx, vl
= aganegnl %, y1=[pr(x), w ()],
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It is interesting to see what the functor I', means when ¢ is a limit cocycle. Then

e = lim g™ edn=al"ai"/aly)

n-—+0co

with regular 1-cochain al”. The map x> a’”

between L°" and L. But in the limit we have
(n)a(n)
(% y]e = lim = a0 [x, y]

x,xeL,, ge G, is an isomorphism

and in general L® 3 L. For instance, if G is finite and & is non-trivial (3.19), then by
the proposition ¢,, will vanish for certain g, A whereas £\ # 0.

The process of contraction by limits of boundary cocyclcs is the standard definition
found in literature [1-3] called the Wigner-Inonil contraction. Thus these standard
contractions are those coming from the elements of (B?/ ~) in H%(G, C).

Definition. A contraction I, is of continuous type if e € (_}?/ ~). It is of discrete type
otherwise.

Thus we can observe that the Wigner-Inonii contractions arise as limits of the coboun-
daries of the grading group which in almost all cases in the literature has been the
cyclic group of two elements. This is only a fraction of the possibilities if one admits
& to be any 2-cocycle of the grading group.

It is interesting to observe that given L and its contraction L” there is a canonically
associated Lie algebra £® that has both as homomorphic images. Namely, we define
a vector space

I'= @ Lo (4.7
where L, . is a vector space isomorphic to L, < L. We denote the element of L,

associated by this isomorphism to x € L, by (x, a). We define muitiplication in L* by
[(xa a)a (}’, b)]=([x9 Jf'], eg,hab) (4-8)

for xe L,, ye L,; a, be K. This indeed defines a Lie algebra structure on £* and we
have homomorphisms

m Lo L (x,a)—x (4.9)
and
we:fe»Ls (x, a)—» ax. (4.10)
The map A°: L-> £ is a functor from G-Lie(K)}- G*-Lie(K).

5. Contractions of modules

We now show how to define a theory of contractions of representations in terms of
Lie algebra contractions. Let M be a non-empty set and let V be a vector space over
K. We say that V is M-graded if

V=3 V.. (5.1)

me M
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Let & be a group and suppose that G acts on M, i.c. there is a map

GXM->M (g, m)—g-m (5.2)
such that

g-(h-m)y=(gh)-m gheG meM. (5.3)

Suppose that Le G-Lie(K). We define the category M-Mod(L) to be the set of all
L-modules V that satisfy

(i) V is graded by M
(i) Ly Vs Vo geG,meM

(5.4)

together with the set of all L-module maps that preserve the M-grading.
Tat {57 and A ha oe abkhnva and o o~ 7 N Wa Aaficn thn ont T AL ) ~F 211
LAl A allu ivi UL ad aUuuYe allud 1ol & & L giuws, n g, Yo UCIUIE IS 5CL T LWL, £ ) Ul all
maps
g:GxXM->M (5.5)
such that
Eg,h‘;’gh,m = tﬂg,hm‘;’h,m = l!’g,mtph,gm- (5'6)

This s the multiplicative form of (2.16). A special case of this is G = M, ¢ = £ whereupon
(5.6) is simply (3.4).
Given e F(M, ) and Ve M-Mod(L) we define V¥ to be the L*-module with
(i} vector space structure equal to V;
(ii) action of L defined by

d! [
X U=y Xe D xe(L%),, vE V,. (5.7}
We call V¥ the g-contraction of V relative to e.

Remarks,
(1) Just as in the remark in section 4, one can see that from a generic point of

view a map (5.5) will provide a module structure for L*® via (5.7) if and only if {5.6)
holds, i.e. € F(M, &).

(2) In sections 2 and 6 we have determined all the possible ¢-contractions as ¢
runs over all elements of H(G, C) for G=2Z, and Z, respectively.

(3) When M =G, y=¢ and V=L we obtain the adjoint representation of L° as
a contraction of the adjoint representation of L.

{4) The association V- V¥ is in fact a functor

I'¥: M-Mod(L) > M-Mod(L").
Let e F(M, £). We define
M*=MxK (5.8)
and define an action of G° on A" by

(g,a) " (m, c)=(g" m, Ygmac). (5.9)

It follows from (5.6) that it is indeed an action.
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Observe also that M* admits a K-action:
a(m, c}=(m, ac) (5.10)
and that for all §e G*, e M¥ aeK

)

A L
£+ (am)=a(g - m). (5.11)
Now one may look at the pair (¢, ¢} in terms of the two sections
a:G~ G g (g 1) (5.12)
B:M- MY mes(m, 1) (5.13)
for we have
&
alg) - B(m) =y, .B(gm) (5.14)
ie.
¥
(8 1) - (m1)=(g-m, ) (5.15)

Just as in section 3 we defined equivalent (cohomologous) cocycles by looking at
the effect of changing sections, so we obtain the notion of equivalence pairs (g, ) by
changing the sections for G and M.

Suppose that

a:G->K™ (5.16)
b:M->K" (5.17)
are arbitrary maps and we define new sections
a': G- G g— (g a,)
B :M->M¥ mi—(m, b,)
and define ¢': GxM~> M by
W
a'(g) - Bi(m) =4, ,B'(g: m). (5.18)
Thus
P
(g, ag) * (ma bm) = 'ﬁ;m(g' m, bgm) (519)
and we have
ab,,
Gom ==L g m- (5.20)
bem

Recall also (3.11). OnAe sees that '€ F(M, €') so MY is Ggf-set. In that case we have
the isomorphism ¢: G..=» G, of (3.14) and also an isomorphism

A MY > MY A:(m, o) (m, b,c)
and the commutative diagram
G x MY —— MY

117

G x MY —— M
Given ¢, £'¢ C3(G, K), we F(M,¢), ¢'c F(M, &), we write (&, ¢)~ (&', ¢') if a
and b of {5.16) and (5.17) exist so that £ = £ da and (5.20) holds.
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We return to contractions. Suppose that (&', '}~ (g, ). For each Lie algebra
Le G-Lie(K), the contractions L* and L° are canonically isomorphic (4.6) and by
this isomorphism we may identify them. Given Ve M-Mod(L), let

VY =TY%(V) VY =T¥(V). (5.22)
The map

vy VYV VY
(5.23)
vyives bv ve 'V,
is an isomorphism of Lie modules (L° and L® being identified) by (5.20).

To summarize: in determining all contractions (e, ) we are free to renormalize
the grading subspaces L, of L by non-zero constants ag, g € G, and similarly renormalize
the grading subspaces V,, of V by non-zero constants b,,, me M. Full use of this is
made to simplify the results of the examples in sections 2 and 6,

Analogously to (4.7) we can define a lifting functor

AY: M-Mod(L) > M*-Mod(L*). (5.24)
For each Ve M-Mod(L) define
A V)=V= B Vimao (5.25)
(maeM*

where V|, ., is a vector space isomorphic to V,, by some map
{(v,a)eveV,,.

Then V* is made into an L*-module by

(x, @) " (0, ¢)=(x-1, g, maC) (5.26)
for xe L,, ve V, and a, ce K. Thus we have maps

AV sV (v,c)—> v

A VS v (v, ¢} cv (5.27)

which are compatible withA (4.9) and (4.10). In other words V and V¥ may be seen as
homomorphic images of V.

It is also possible to contract the universal enveloping algebra of a Lie algebra
Le G-Lie(K). Let e € H>:(G, K). The grading of L gives U(L) a G-grading

U= U,. (5.28)
gEC

The contraction /(L) is:

(i) U®(L)=U as a vector space;

(ii) multiplication is defined by

x Ib y= Eg.hxy XE Ugs YE Urr- (529)

Clearly U°{L) is not in general the universal enveloping algebra U(L") since ¢, , may
be zero, but U(L®) has no zero divisors. Furthermore, L* = U®(L) may not generate
U*(L) as an algebra. Nevertheless, if ¢ e F(M, ¢) and V¥ is the contraction of the
L-module V then V" is naturally a U*(L} module via

u'f' U=, 0 uc U, veV,. (5.30)
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As an example of what is involved when inferring information about U®(L) from
U(L), let us consider the question of quadratic Casimir operators.
Suppose that
C=3 "y geG e, yihel ., (5.31)
g

P

where g runs over G, is a Casimir operator of L. We define C° to be defined by the
same expression as seen in U°(L). Then for ze L,

o]
- e

=T {lxg, 21 - yih+x{ [yt 21}
=T {egneang (XY, 2200+ e, et - [y, 2]}
=T entgng{[x, 2lyhi+ 2 - [y, 2]},
Thus, if for each he G
EgnEghgt 1S constant for all g G (5.32)
we have
[C5z]=0 (5.33)
and C* is a central element of U®(L).

6. Contractions of Z -graded representations of Lie algebras

Consider any £ ,-graded Lie aigebra L,

L=Ly®...®L,, (6.1)
with none of the commutators of grading subspaces identically equal zero,
0#[L;, L)< Lisx Jj, k, j+k (mod n). (6.2)

Treat Z,, as a set and let Z, act on Z, by j- k'=j+k (mod n). Suppose that
V= Vﬂ@...@ V"_l {6.3)

"is Z,-graded L-module in Z,-Mod(L). Let s C¥Z,, K).
The grading is preserved during a contraction. Hence just as in (2.13), the contracted
transformation L ¢ V is described in terms of LV before the contraction and the matrix
¢ € C™*" of the contraction parameters for V. In general, one has

lIlooLo . . . tbr’lﬂ—-ll’l VO
. Vl

L-V= . II'_;ij ‘}"j—l,k+1L:f—l . . . (6-4)
[0 S ‘ir’j.k:i-le

l!’n—l.OLr’!—l . - . wo,n—lLl) .Vn—l

where the subscripts of ¢ are read modulo n. An example, n =2, of (6.4) is (2.13).
For a fixed e, the matrix ¢ = () is a solution of the system of quadratic equations
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(2.16) or, equivalently, (5.6). A useful strategy for solving such a large number of
equations is described next, 4ssuming that a contraction ¢ is fixed.

Among the equations of (2.16) consider first the n equations

Eoollom = Yom 0sm<n. (6.5)

For any contraction we have either ggo=10 or g5=1. In the first case o, =0 for
0= m<n, in the second one g, =0 or 1.

oo

With a fixed solution of equations (6.5} one considers the subset
E0jthim = Ym0, j+m = WomWjm

of equations (2.16) from which some parameters 4, are not determined at all and
some are found to be zero. More precisely,

{arbitrary if £g;= o j1m = Pom
0 otherwise

o<j<mO0<m<n (6.6)

Yim = (6.7)
for 0<j< n. Solutions of (6.5) and (6.7) are then used to simplify the remaining

equations of the system (2.16) before solving them directly.
Let us now determine Z;-contractions of V. The Z,-contractions L® of L were

found in [15]. There are cight continuous contractions

1 1 1 1 11 1 1 1 0 0 0
e=t1 0 0 1 1 0 i 00 01 1
1 0 0 1 0 O 1 01 01 0
0 0 0 ¢ 00 0 0 0 ¢ 00
0 01 01 0 0 0 0 0 0 1 (6.8}
\0 i1 Ji \ﬁ 1] 0; \(‘1 01 J \ﬁ i G/
and five discrete ones
1 0 0 1 00 1 0 0
e=|0 ¢ O 01 0 0 00
0 0 ¢ 0 0 0 0 01
1 1 0 1 01
1 0 Q Q 0 of. (6.9)
0 0 0 1 0 0

In most cases of interest the grading subspaces L, and L, of Z;-grading of L could
be interchanged, therefore we will consider only one of each pair of cases in (6.8) and

(6.9) which differ by interchange L, <> L.
The system of equations (2.16} which we have to solve for n =3 consists of 27

equations of the following form {for m=0, 1, 2):

Eoo¥om = Wom {6.10a)
E0¥im = Yimbom+1 = ¥1mPom (6.10b)
E02¥am = YamWo,m+2 = Y2mbom {6.10¢)
Enzm = YimP1m+ (6.10d)
ExWim = YamWa,m+2 (6.10¢)
E12lom = YamWimr2 = YimPa,mer . (6.101)
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The system of equations (6.10) is invariant under the cyclic permutations of the columns
of ¢. Its solutions are shown in table 2.
For n =3 we have from (6.4)
Yoolo Y ls dL\ (Vo Yoolo Vot LV + ¢, L, V,
¥ioly Yorlo YL, || Vi | =| dioly Vot Y1 Lo Vi+ 4y, Lo V3 ). (6.11)
‘)&ZOLZ ‘}‘Ill Ll "'f‘IOZLO VZ d’ZOLZ VO + df'llLl Vl + tMJZ‘[’U V2

The solutions of (6.10a) are listed in the following table with m=0, 1, 2.

Case E0o Yo,m Yo,m+1 Yo, m+2

a 0 0 0 0

b 1 1 1 1 (6.12)
c 1 1 0 0

d 1 0 1 1

e 1 0 0 0

The solutions of (6.10b) and (6.10¢) are given in (6.7).

The matrices ¢ of (6.8) and (6.9), used in (6.10), together with (6.12) and (6.7) for
n=3 lead to the following simplified versions of equations (6.10d)-(6.10f) with
m=0,1,2: .

Pom = 'nblmt.r"l.m+l1
0= tomtls mia } solutions: A, C, E, F (6.13a)
0=drmii m2 )
0= d’lm¢'l,m+] )
0=tttz solutions: A, B, C, D, F (6.135)
0= d’2ml»b1,m+2 )
0= l!llm )
O0=ontfomez f solutions: A, B (6.13¢)
0 = 'pzmdll.m+2 7
{1e2in (6.13¢)} solutions: A, C. (6.13d)
The solutions A, B, ..., E in (6.13) are the following matrices i = (yr;.):
* k% * K % ok %
A=(0 0 0 B=|0 0 O C=(a 0 0
0 00 B 0 0 0 00
(6.14)
* * * * * * * * *
D={a 0 0 E=la 0 0 F=| o« B 0}
g 0 0 0 0 B af 0 0

The top row is arbitrary because it does not enter (6.13). Also o and B are different
from 0 but otherwise are any complex numbers, The matrices B, C, D, E, F with
cyclically permuted columns are also solutions of (6.13).
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Table 2. The Z;-graded contractions of representations of Z;-graded contractions of Lie
algebras. The Lie algebra contractions is given by e. The contraction of representation is
given by the corresponding ¢ or, equivalently, by L+ V in the format of equation {6.11).
Out of three matrices ¢ which differ by cyclic permutation of columns only one is shown,

P No " LV
111 111 Ly 0 0\ /V,
100 L1 100 L, Ly o |{V,
100 1 00 L, 0 LJ/\v,
111 Ly 0 0\ /V,
1.2 1 00 L, Ly Li|lV,
001 0 0 L/\v,
11 1\ Ly 0 0)\/V,
1.3 100 L, Ly 0]l W
(0 00 0 0 Lo) vz)
11 Ly 0 0\ /V,
1.4 000 0 Ly o|lwv
100 L, 0 Lyj\V,
11 Ly 0 0\/V,
1.5 000 0 L, 0w
000 0 0 LJ/\v,
110 Ly 0 O\/V,
L6 100 L, Ly oll v
oy (5 ey
110 Ly Ly O\ [V,
1.7 0 00 0 L, 0|V,
0190 0 0 0/\V,
110 Ly 0 0\/V,
L8 000 0 L, 0 (v,
00 0 0 0 0/\v,
1 00 Lo 0 O\ /V,
19 000 0 0 offwv
000 00 0/\V,
111 111 Ly, 0 0\/V,
1 1 0 1.1 110 (L, L, © (v1
1 0 0 1 00 L, L, Lyf\V,
111 Ly O 0\/V,
1.2 1 00 L, L, o]|lw -
0 0 0 0 0 Lyf\V,
111 Ly 0 0\ /V,
113 000 (o L, © (v1
(0 00 00 Lo\ W
110 Ly 0 0N\/V,
1.4 1 ¢ ¢ L Ly, 0]V
o) (5e )
1 1 0 Ly 0 O\ /V,
115 000 0 L, ol{ v
(0 00 (0 0 o (v2
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Table 2. (continued)

No.
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Table 2, (continued)
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Table 2. {continued)

€ No ¢ L.V
100 Ly 0 O\ /Vy
VHLS (o 0 o) (0 o o)(v,)
0 0 0, 0 0 of\v,
100 L, 0 0\/V,
VIIlLe 0 0 0 (0 0 LV
001 0o 0o of\y
00 0 0 0 0\/V,
VHIL7 (0 0 0) (0 0 0)(\/,)
\1 ¢ 0’ \Lg 9 9 \V3;

There remains the case-by-case analysis of the individual contractions and further
restriction of the range of values of @ and B in (6.14) by renormalization of subspaces

annardiea to (8 MY nmd soaniller aloms dlan pwn Afe o o Qe

"’m b —G, }. 2 ALVUIMLLIER W S, LU}' allyl PUQDLUI}' QaloLvr LIXC Eldulllg bUUDPd\-Cb .er ﬂ« - U,
i, 2, accordlng to (3.11). We illustrate this next in one case; table 2 contains all the
results.

Exampfe 2. Consider the contraction L® given by
11 1\

e=|1 0 0].
1 4 ¢
In this case (6.10) becomes
¢0 m= d’%m

'.{’1 m= lJ"lmdlo m+1 = 'J’lmd‘Om
= d’Zmd’D m+2 = w2m¢0m

(6.15)
0= tplm¢l,m+l
0=tz ms2
0= me'ﬁl,m+2 .

First put o, =1 for all m, which is case b of (6.12). This reduces (6.15) to the last
three equations, i.e. to the system (6.13b) whose solutions are A, B, C, D, E of (6.14)
together with the cyclic permutation of columns in B, C, D, E. Let us write out one
solution of type E corresponding to m=1. In that case we have ¢ as the matrix E
with one step cyclic permutation of columns:

111
v=[0 a 0 (6.16)
B 0 0
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In the form (6.11) we write the contracted graded linear transformations as
L, 0 0N /V, LV,
0 L, 0 }Vvi= LV,
BL: al, Ly/\V, BL,V,tal, Vi+ LV,

Let us compare (6.17) with similar solutions for m=0 and 2 respectively:
Ly 0 o Vo LV,
al, L, BL, || Vi al,\ Vy+ L,V,+8L,V,
0 0 Ly/\V, LV,
L, BL, aL)\/[V, LoVo+BLV+ Ll V,
0o L, 0 v, LV,
0 0 Ly/\V; LoV,

I
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{6.17)

(6.18)

(6.19)

One can verify directly that (6.17)-(6.19) are, indeed, representations of the contrac-

ted Lie algebras L®. Let us do this just for the commutators

[Lo, Li).= L, [Li, L;].=0
and for the representation (6.17). We have therefore L,, L, and L, respectively as the
matrices
L, 0 0 0 0 0 0 00
0 L, 0 0o 0 0 0 0 0]
0 0 L, 0 oL, 0 BL: 0 0

Consequently,

W 'Jf
[Lﬂ) Ll]s b V‘_(LDLI-"L LU)E )

0

o L0 0
0 Lo 0 QL] 0
0

0

o
<
(=]
&
=]

0 0—0

=<0
(0 CELOL! 0 0 CtLng Vz
0 0 N/ V¥
={0 | 01l Vi
0 af[Ls, L] 0/\V,
Vo
= a[Ly, L1V,
Va

Similarly, we find
0 0 0/0 00 0 0y /0

fL,, L;J¥V=¢10 O oOff 0 O O|-] O O Q{0 O O Vi
0 al, 0/\BL, 0 0 0 0f\0

Vo
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The parameters o and 8 in (6.17), (6.18) and (6.19) can be transformed to 1 without
loss of generality, if they are different from zero. That is achieved by renormalizing
the corresponding grading subspaces.

Among the representations {6.17}-(6.19), only one of them with a = 8 =1 is shown in
table 2. In order to complete the contraction of representations of L® in our example,
one would first need to complete the case b of {6.12) by considering also the solutions
of types A, B, C, D in addition to E, and then find the solutions for the cases ¢, d, e
of (6.12).

Example 3. Consider an example of a Z,-graded affine Lie algebra A, generated by
em=e@1t" fm=f®1" hiy=h®1t" 4 (6.20)

satisfying the commutation relations
[x(m): y(n)]=[xs y](m+n)+m6m+n,0(x|y)[ (621)

where (x|y) is the Killing form in the three-dimensional simple Lie algebra generated
by e, f, h with the commutation rules

le.f1=h [h e]=2e [A f1=-2f (6.22)

We choose the Z;-grading subspaces Ly, L, and L, of A, spanned by the following
generators,

Lo ={hiky, €ci+2) > Fr+1)s £}
Li={hgr1y, ecnys Sl (6.23)
Ly={hgk+2), €3x-1ys fanr} —w0< k<00,

We make the usual identification with the generators E,, E,, H,, H,, F,, F, of
the affine algebra

Ey=eqel, H,=hg e Ly Fi=fo€L,
E(J:ﬁl)ELO H{):,g_h{o}e Ly F0=e{_,)eL1.

Let us take two irreducible representations of Al with highest weights (1 0) and (1 1).
The corresponding representation space V decomposes under the action of L,, L, and
L, into subspaces V,, V, and V; respectively. Qur task is to describe V,, V, and V;
for the two representations (10} and (1 1) and then use them in some of the cases
listed in table 2. We choose the example considered in (6.17).

The space V is an infinite direct sum of finite-dimensional subspaces labelled by
weights of the corresponding representation. A practical way to give Vg, V, and V,is
to indicate the weight subspaces spanning them.

The first few weights of (1 G} and (1 1) are shown in figure 1 in the standard basis
of fundamental weights.

The horizontal lines in figure 1 linking two boxes indicate transformations by f,,
(from left to right) and e, (from right to left). The vertical connecting lines are due
to e, (direction down) and f,, (direction up). Since both directions are valid
transformations, the lines on figure 1 are not oriented. Therefore one can immediately
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2

% [Tl 1 s ikl s g 78]

=1 [ = | PR
vy | =Pl j=rz

Figure 1. The first few weights of the affine- A, representations with highest weights (1 0)
and (1 1). The subscripts indicate the multiplicity of the weight when it is greater than I;
the overbar is the minus sign.

indicate which waiaghte af fionire 1 lahsl ek
AW ANAAALY PP LDLAAL "v‘&lll-lﬂ WL llsul\-{ A LUl oW L

he highest weight say, has to be assigned arbitrarily (let it be in V).
The contraction of our example is that of (6.17). Hence, we have the annihilating
actions

coenf V. V and V.
5 0 u

cTia - Nnwravar
S o i F(g, T} @il 2. LAV L YL

-
=
«
B
-

¥
L V,=L " Vo=L," V,=L," V,=0,

Now we can redraw figure 1 with the lines correspondingly erased. If transformation
by ew, fioy, €—n» S i5 non-zero in one direction only, the corresponding line is
oriented. Results for (10} and (1 1) are shown in figure 2. Let us emphasize that there
are many other transformations possible due to generators other than the four simple
ones between weight subspaces, but these are not shown in either figure 1 or 2.

Aftrar tha asntractinn hath ranracantatinng ramain indecamnaosahts Fiours 2 A
Al e COMraciion ol ICProshitatiCis ICiilalll MAQCCGITIpUsaciC, riguic 2 G

not quite reveal this fact. Note that with the contracted commutation, E, and E, do
not generate the positive part of L. Indeed, [E,, [E,, Eyl.]. =0.

@

o
UL

7. Contractions of tensor product decompositions

Let £ define a contraction for G-Lie and let V and W be L-modules for some L& G-Lie,
Suppose that V and W are graded by M and M is a group (we use multiplicative
notation). We suppose that the G-action on M satisfies

g-(m-ny=(g-m)-n forall ge G,m,ne M. (1.1)
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[1of—[32]
izlal, [3
z r‘[il_?_lz

i};~[s3],

G-

Clevw, Tlew, [ew.

Figure 2. The oriented horizontal and vertical lines indicate the non-zero action of e,
Si0y» &1y, Jiy, on the weight subspaces. The Z,-grading of figure 1 is preserved here; the
overbar is the minus sign.

Let ¢ be a contraction of ¥ compatible with e. We denote V considered as an L*-module
by V¥ Consider V® W graded by M in the usual way:

(VOW),= ¥ V,QW,.

mn=p

Thus we may also contract V& W to get (V® W)¥. We wish to compare (V& W)*
with all V¥® WY, Both are L°-modules. Let ve V,,, we W,, x¢ L,. Then v@we
(V® W)Y, and

X (0@W)=thy maX (V@ W) =Yg mn((x0 @ W) + (2@ xW}). (7.2)

However v®&we V4® WY, If we use the tensor product action of L° on v®w seen
in this way we get

X (0@w)=x - vQ@w+o@x  w=y X0 W+, , 0@ xw. (7.3)

Unless 4y mn = ¥y, = .0, (7.2) and (7.3) will not in general be equal.

In order to compare (V® W)* with V*® W¥ we need an L°-map between them.
The above tells us that straight identification will not work without extremely restrictive
hypotheses on . Instead we try to construct a map

mV'OW!' S VR W (7.4)

T|(vt@wh = Tmn Tmn € K. (7.5)
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We want 7 to be a L°-map. Let v, w, x be as above, then

x-{o@w)=x- véw=x- {Tm 0@ W}
= Tm,nwg,mnx(v® W)

= Tm,n¢g,mn(xv®w+v®xw) (76)
Hx- (0®wW))=7(x-r@w+o®x- w)

= ‘{’g,m(xv é w+ ‘l@,ﬂ)@XW)

T

= P mTam X0 W+ g 1T 00 @ xW. (7.7)
Comparing (7.6) and (7.7} we must have (generically)
Tm,ntit’g,mn = l)[’g,ngm,ﬂ = '#g,n'rm.gn' (7'8)

In particular, equations (7.8) impose no restriction on 7 if the only non-zero matrix
elements of ¢ are those given by ¢, ;, =1, forany h € M. In all other cases 7 is symmetric,
T
T=T,
An interesting example of this is the case M =G, ¢=¢e=1.
In the case of Z,-grading the solutions = of (7.8) are summarized in table 3.
Consider a decomposition V@ W =@ U(i) as L-modules. Assume that each U(i)

is M-graded by inheritance from V@ W, i.e.
Uy= & {UHn (VO W),} (7.9)

meM

Table 3. Non-trivial Z,-graded contractions of tensor products of two representations are
given in terms of the matrices 7, solutions of (7.8), for fixed & (contraction of the Lie
algebra) and fixed ¢ (contraction of representations).
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—
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o o
s —
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=
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o O
S

=
—
N e

1
1

(=]
(=)

,—..\/—.\/.—..\6—_.\,_.\/_.\,__\
(= =]
e ——

oo) o (ool
or) G GG
I G A

—
E=TEY
p—
<
[==]
e
=N
o o
N N

—

=]
<
—
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Then U(i)* exists. Note that for ue U(i)s, < (V® W)", and for x e L,

X U=t xuec UG).,.
Thus each U{(i)¥ is an L*-module. Therefore

(VW)Y =P UH" (7.10)
as L*-modules.

Now if we denote the image of = by 7 then I'm U(i}" is an L°-submodule of
(V® W)Y and P(i)=7""(I ~n U(i)¥) is an L -submodule of V¥® WY, Set

Pi=3% P(i) and C=7"'0)=F V,,®W, Ty = 0. (7.11)
Then we have the sequence of L°-submodules

V'R WY> P Co(0) (7.12)
and

P/C=D{(P()+C)/C}. (7.13)

Example 4. We consider what this looks like in the case of Z,-gradings. Suppose that
V and W are Z,-graded L-modules. Adopting the matrix notation as in section 2, we
introduce the grading structure explicitly also for the tensor product

V®W—'(Vo Vl)(WO Wl);(VO®WO+Vl®Wl V]@WO'FVO@W,)
AV, VAW W, Vi@ W+ V,@ W, V,@W,+V,®W,

where, as in section 2, we could collapse the last matrix to

(Vc.@ W+ Vi® Wl)
Vi@ W+ V,® W,

if no further operations are required. We express the action of 7 on V& W by

Too Vo@ Wo+ 7, VI W, 7, V@ W + T VI & Wo)

VIW-SVROW=
OW->Ve (701V0®W1+710V1®W0 Too Vo® Wot 7, V,® W),

Then we have

Liqvewy) =L (vow)

given in terms of matrix multiplications

(0 wel w))
A0 el v+ Wes (i w)
-0 v el )+ wen (i w)

Consider the contraction defined by £ = (} ;) and 7 = ¢ = £, Then the matrix notation
in parallel,

(7.14)

4 Vo® Wy
I= V® W= Vo@ W0+ V0® W1+ V1® W()=

V@ W+ Vi® W,
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Suppose that we have a decomposition V@ W=@QU(i), where each U(i) is
Z,-graded from V® W,

[ U
U(')'(U(:‘)l)‘
Then U(i),< I and
oo 0N [V,RWA
S P N
1
V,.® W,
=( ;}%) ‘) = P(i). (7.15)
1
In general, P(i)' # P(i). However P(i})’ is a L*-module since

U(i) s V@ W+ VB W, Li(Vo&

AW+ Vi@ W) Vi@ W
Set
P=3F P(iy =Y U(i+ V@& W,
=(V®W)1+V1®w1
=V @ W+ V& W+ V® W,

=( View, ) (7.16)
VI® W0+ Vl® Wl
Thus we have the chain of submodules
V'@ WY |
! = Vo® W,
=L P(i)
l =@ U (7.17)
C
| = V1® W
0

where U(i) = (U(i)+ C)/ C. The three indicated quotient modules are all L*-modules
on which L} acts trivially. Thus we obtain considerable information about the tensor
product of the contracted representations.

Let us look at a particular example of this, namely L =sl(4, C) with the Z,-grading
defined by assigning degree 0 to the simple roots £a, and e, and degree 1 to the
simple roots +a;. Then L,=sl(3, C) X u where u is one-dimensional and L® has a Levi
decomposition

sl(3,C)®(u@ b2 L“) (7.18)
oy
where
A1:= {QEA a=2ciai,C351m0d2}-

Any irreducible representation in congruence class 0 (weight system inside the root
lattice of sl(4, C)) is compatibly Z,-graded and has an e-contraction. For example the
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Table 4. Branching of si{4, C) representations to sl{3, C) x u representations. The entries
in the left column are s5l(4, C) weight labels and those in the top row are sI(3, C} weight
labels. The table entries consist of the 51(3, C) multiplicities together with the appropriate
u-labels. Thus for instance in (2 1 0) the representation (2 0; —4) occurs ongce.

Even 0Odd

22y (03 (30) (1y (00 a2y Q@ (©2) 2o @1 o0
(202) 1,0 1,0 1,0 -4 1;,+4 1,-8 1L;+8 1,-4 1;+4
(012} 10 10 1;—4 1; +4 1;,+8 1;+4
210 1,0 1,0 1;+4 1,-4 1,-4 1,-8
2101 2:0 2;0 ;-4 2,44
(020) 10 L+4 1 -4
000) 1,0

15-dimensional representation with weight labels (1 0 1) decomposes relative to L, as

(1,100 +{0,0;, 0)+ (1,0, 4)+(0, 1; —4}. (7.19)
(131)0 (11;1)1
dim 9 dim 6

In order to determine (7.17) we decompose (101)®(101) as an sl(4, C)-module and
decompose it as an Ly-module into even and odd parts. Thus

(101)®(101)=(202)@(012)D{210)D2(101}D(020)B(000)

decomposes according to table 4, and

P’_ s ‘,’1® W’l
_((2, 1;4)+(1,2; —4)+(2,0; —4) +(0,2; 4)+2(1,0; 4) +2(0, 1; —4))

Ay
in this example, '

emark

8. Concludine
8, Concluding

It is worthwhile pointing out again that the product of two contractions is also a
contraction. For more complicated grading groups this provides a useful tool for
producing new contractions from old ones.

In this paper we have assumed in developing our equations that we are in the
generic case, This does not mean that the Lie algebras and representations involved
must themselves be generic for the contractions to work. Rather the generic case
imposes the maximum number of conditions on the parameters. Lie algebras and/or
representations which are not generic will admit contractions beyond those appearing

in our classification.
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