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Abstract. Simultaneous grading of Lie algebras and their representation spaces is used to 
develop a new theory of grading preserving contractions of representations of all Lie 
algebras admitting the chosen grading. The theory is completely different from the tradi- 
tional ways of contracting representations. The graded contradons fall naturally into two 
classes: discrete and continuous ones related respectively to 2-cacycles and coboundaries 
of the grading group. 

1. Introduction 

Contractions of Lie algebras arise as a natural way of passing from one group of 
symmetries to another similar, but otherwise not directly related group of symmetries. 
In the traditional approach a contraction of a Lie algebra is the continuous limit of a 
parametrized family of isomorphic Lie algebras. There is a considerable body of 
literature on this subject (for excellent expositions see [l-31) from which it is apparent 
that the main obstacles to a satisfactory theory are twofold. First, in its full generality 
the study of all continuous deformations of the structure constants of a Lie algebra 
[4-61 offers such a bewildering array of possibilities that one cannot hope to obtain 
precise and practical information except in the simplest cases. Second, to be useful, 
contractions of Lie algebras need to be accompanied by contractions of their representa- 
tions, a task that has not proved to be at all easy [7-141. 

In [15] it was shown that by working within the context of graded Lie algebras a 
very straightforward approach to contractions can be made, which is at once general 
enough to contain all the well known contractions as well as infinitely many others 
and, at the same time, sufficiently constrained to allow a complete classification once 
a grading group has been specified. 

In this paper we show two things: 
(1) This graded contraction process is functorial and depends on the grading group 

G rather than on the details of structure (for instance, finite or infinite dimensional) 
of the Lie algebra itself. The contractions are classified by certain weak cohomology 
classes of G with coefficients in the ground field K and the contractions that fall within 
the traditional limit process correspond to those cohomology classes that lie in the 
closure of the coboundary classes. 

(2) By considering along with the graded Lie algebras their compatibly graded 
representations, we obtain a theory of contractions of representations that contains 
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the Lie algebra contractions as the special case for the adjoint representation. Our 
theory is completely different from the traditional approach to contractions of rep- 
resentations [7-141. 

The idea of making the study of gradings the backbone of a general approach to 
Lie theory was apparently put forward only recently [ 161. This article can be considered 
as another example of how fruitful such an approach can be (see also [15-201). 

In section 2, to exemplify what is to follow, we consider the case of Z,-graded 
contractions of representations ofgeneral Lie algebras over @. Here all the computations 
are transparent and easy to perform, hut nevertheless, the outcome ofthe representation 
contractions summarized in table 1 is new. 

In section 3 we identify the parameters of the Lie algebra contractions as the values 
of 2-cocycles of the grading group in a central extension of the group to a semigroup. 

In section 4 the category S-Lie(K) of Lie algebras over K with a grading given 
by an Abelian semigroup S is introduced as well as the contraction functor r. acting 
in S-Lie(K). Discrete and continuous contractions are then related respectively to 
2-cocycles and coboundaries of S. 

In section 5 we study the contractions of representations which are graded in a 
way compatible with the grading of Lie algebras. 

In section 6 we consider the cyclic groups Z. as the grading groups. All the graded 
contractions of representations of Z,-graded Lie algebras are classified. 

In section 7 we show how to compare the contraction of the tensor product of two 
representations with the tensor product of their contractions. In general, these are 
quite different and the process shows how we can infer information on the one from 
the other. 

R V Moody and J Patera 

2. Contractions of &-graded representations of Lie algebras 

As an illustration and motivation of the general procedure described subsequently, we 
devote this section to the simplest case, where all the constructions can he made in a 
straightforward and explicit way. First let us recall the &graded contractions following 
[15]. We consider any Lie algebra L of finite or infinite dimension which is graded by 
the cyclic group Zz of two elements. Thus we have 

L =  Lo@ L ,  (2.1) 

o # [ L j , L k l c L j + k  j ,  k, j +  k (mod 2). (2.2) 

Note that we have chosen to consider the generic case where no commutator vanishes 
identically in (2.2). More precisely, we write O # [ L j ,  L,] if there are some elements 
X E  Lj and Y E  Lk such that OZ[x, y ] .  

The most general contraction 

L+ L' 

of L that preserves the Z,-grading is described in terms of the commutators (2.2) of 
L (before the contraction) and the matrix E = ( c jk )  E CZx2 of contraction parameters 
introduced as follows: 

[x. y1e := &j.k[x, Y l  for x E Lj, y E Lk. (2.4) 
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As a shorthand we will usually write expressions like (2.4) in the form 

[Lj, Lk16 := Ejk[Lj, LhIE EjhLjIh. ( 2 . 4 )  

Here the subscript E denotes the contracted commutator. 
The Lie algebra L and its contraction L' are isomorphic as linear spaces, only the 

commutation relations in L' are modified by (2.4). In order that the result of the 
contraction L' be a Lie algebra, the contraction parameters must satisfy antisymmetry 
and the Jacobi identity. This amounts in case (2.2) to the requirements 

(2.5) 2 
Ejk = Ehj EQOEOI = E m  EWE,, = E O I E I I .  

The latter two equations can be expressed in a more compact form 

&jh&j+km = EhmEj,h+m. (2.6) 

If we do  not assume the generic case of (2.2) then one or more of the equations (2.5) 
may be unnecessary. For further discussion of non-generic cases see [15]. 

The equations (2.5) are solved trivially either by 

(no contraction) 
e = ( :  :I 

or by 

E = ( :  3 (Abelian Le). 

The non-trivial contractions are given by the remaining solutions of (2.5). These are 

The first two solutions (2.9) of (2.6) can be obtained by a continuous change of E 

starting from (2.7) without ever violating (2.5): they are continuous contractions of L. 
The last one, E = (A z), is a discrete contraction of L. 

Suppose that the action of a Z,-graded L splits an L-module V into the direct sum 

V =  VoQ V, (2.10) 

0 # LjVm E y + ,  (2.11) 

where the subspaces v, j = 0, 1, are defined by the grading property 

j ,  m, j + m (mod 2). 

As in (2.2) we assume the generic situation. 
It is instructive to write V and LV as follows 

thus making the graded structures explicit. 
We would like V to become a module for L'. This imposes a modification on the 

action of L on V .  In the same way as we did in (2.4) for the adjoint representation, 
we introduce new contraction parameters (Ljm. We denote the contracted action of L 
on V b y L T K T h e n w e h a v e  

(2.12) 
j. 

(LjV,)Q = Lj ' v, E $j,LjVm 
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or, equivalently we write 

R V Moody and J Parera 

(2.13) 

In particular, for the adjoint action of L' on itself, we have I) = E and (2.13) becomes 
(3.10) of [15]. Note that in general $jm # $mj. 

*ooLu *llLl *ooLovo+*11L1 VI 

=(*,,L, $ o l L x 3 = ( *  10 L 1 v O+*OlLOV, 

The representation defining relations 

[L j ,  Lkllm)= LjLxIm)-LdjIm)s Lj+*lm) Im)EV,,,,m=O,1 (2.14) 

before a contraction L+  L', and 

* 
ELj, Lkl6 . Im) = ~ x m ~ j , k + m L j L x / m ) - ~ j m ~ ~ j + m L k L j l m )  

&jk$j+k,mLj+klm) (2.15) 

after the contraction, must hold simultaneously. Thus we arrive at the equations for 
I) defining the action of L' in V: 

&jk$j++m = '!'km$j,k+m = *jm$!-.j+m (2.16) 

where the subscripts are read modulo 2 in the Z2 case considered here. In particular, 
for the adjoint representation one has $ = E ,  and equations (2.16) coincide with (2.6). 

There are two obvious solutions of (2.16): the trivial one fi = ( $ j m )  = (0) which we 
disregard, and $ = E, which is exemplified by the adjoint representation. In the latter 
case we find for + the solutions given in (2.9). A complete list of non-trivial solutions 
$ for each E is found in table 1. 

Note that in the case of the trivial contraction (2.7) of L the system (2.16) of 
equations for $ has only trivial solutions: 

m.e artinr! Qf L' on v is thgs determined hy a pair of matricer E and $1 in C2"2; 

Example 1. Consider an example of the simple Lie algebra sI(3, 'C) and its natural 
representation (1 0) of dimension 3. We denote by a and p the simple roots. The 
standard basis of the algebra is given by the generators of the root spaces e,, f a ,  e,, 
f ,  and their commutators 

Consider the following Z2-grading of sI(3, C) 

Lu = C h, +@ h, +Ce,  + Cf, 
L, = e e, + Cf, + C e,+, + 

(2.17) 

(2.18) 
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Table 1. Non-trivial &graded contractions of representations. The results are presented 
in the format of equation (2.13). 

No. L ?  V 

1.1 

1.2 

1.3 

1.4 

1.5 

11.1 

11.2 

111.1 

111.2 

111.3 

I 11.4 

111.5 

~ 

where C stands for an arbitrary complex coefficient. Then one can verify directly that 

[Lo,  Lo] = Ch. +Ce, +Cf= c Lo 
[Lo, L,1= Ll (2.19) 

ELI, & I =  Lo. 

Consequently the grading is generic. 
The representation space V, 

V=Cll,O)+Cl-l, l)+ClO, -1) (2.20) 

is spanned by the weight vectors l l ,O) ,  1-1, l), 10, -1). The graded action of sI(3,C) 
splits V into two subspaces Vo and V, defined by 

Lo vo = vo L,V, = v, L,V0= v, L, v, = v, (2.21) 

Vo=C(l,O)+CI-l, 1) VI = CIO, -1). (2.22) 
where 
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In this very simple example it is equally easy to write the relations (2.21) in a 
matrix form. One has 

LoVn*(: d b O  0 )(i)=(r*iz) 
0 0 - a - d  

0 0 - a - d  - ( a + d ) z  

O O e x  
L,V,* 0 0 f y = 

( g  h d(d ( g x : h y )  

a , b , c , d , x , y , z c C .  

(2.23) 

Let us now consider the contractions of L with E = (! A). The entries 1.1-1.5 of table 
1 are the contractions of the representations in this case. The matrix representation 
of the operations (2.23) can be substituted into the column LT V of table 1 in order 
to have the contracted algebra and its action on V written in a matrix form. Thus for 
example, for 1.1 we get 

a b  0 
c d  0 0 0  

c d  

Without loss of generality this can be rewritten as 

b O  ax + by 

g h - a - d  gx+  hy - ( a  + d ) z  
(2.24) L . - V = ( :  * d 0 )(!)=( cx+dy  ). 

Similarly for 1.2 of table 1,  we would find 

(2.25) 
0 0 - a - d  - ( a  + d ) z  

For representations of higher dimensions it is not practical to write the matrices 
explicitly. It suffices to describe the subspaces V, and V, and to use table 1. 



Graded contractions of representations of Lie algebras 2233 

This example requires a comment. Here the grading of sI(3, @) and V is the result of 
the action of a cyclic subgroup of SU(3) c SL(3, @), which is generated by an element 
g of the SU(3)-conjugacy class [l 0 I ]  (for properties and further details of these 
notations see [21] and [22]). The element g acts on irreducible representations of 
sI(3, @) with eigenvalues *I (representations of congruence class 0 )  and *fl (rep- 
resentation of congruence classes 1 and 2). Having considered in our example a single 
irreducible representation, we could simplify the example by using sI(3, C )  = Lo@ L ,  
and V =  VoOV, for what should have been s1(3,C)= L&L, and V =  V,OV, (sub- 
scripts mod 4). In general, when tensor products of representations are considered 
(section 7), such a simplification would lead to inconsistencies in the grading. 

3. Semigroups and 2-cocycles 

Our theory of contractions is based on a generalization of the theory of 2-cocycles as 
they appear in group cohomology and particularly in the theory of central extensions 
of groups. 

Briefll, if G is a group, then a central extension of G by an Abelian group K is 
a group G whose centre contains K and for which there is a surjective homomorphism 
r: G +  G whose kernel is K. Given such a central extension let us take any section 
a : G +  6, that is a map satisfying r. a = ido. Given any g, h E G, 

,, 
a ( g ) a ( h ) a ( g h ) - '  - 1. 

So we introduce 

:= a ( g ) a ( h ) a ( g h ) - '  E K (3.1) 

E :  G x  G +  K ( g ,  h )  Es.h (3.2) 

Eg.ha(gh) = a ( g ) a ( h ) .  (3.3) 

E&hEsh,k = Eg,hkEh.k. (3.4) 

defining a map 

for which we have 

From a ( ( g h ) k ) = a ( g ( h k ) )  we obtain at once that 

These equations differ from (2.6) in that there we are treating the Abelian grading 
group multiplicatively as opposed to the additive interpretation there. 

A mapping (3.2) satisfying (3.4) is a 2-cocycle on G with values in K.  Conversely, 
given such a map we can construct a central extension G' of G by K setting 

C?'=GxK (as a set) (3.5) 
and defining multiplication by 

(g, a ) ( h ,  b )  = (gh, Es.hab) (3.6) 
and the projection 

n , : 6 + G  (8, a )  - g. (3.7) 
The multiplication is associative by (3.4). I t  is easy to-see that E , , ~ = E ~ , ~  is an 

element e of K independent of g and (1, e - ' )  is the identity of G' and (g- ' ,  e-lE-jt, 8 8  a-')  
is the inverse of (g, a ) .  
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Now let G be any Abelian group and let K be a field treated as a monoid under 
multiplication. The non-zero elements of K are denoted by K " .  (Much of what we 
are going to say would work for any group G, not necessarily Abelian, and any 
commutative monoid.) A weak 2-cocycle on G with values in the monoid K is a map 
(3.2) satisfying (3.4). We denote the set of weak 2-cocycles by C'(G, K). Given 
E E C'(G, K )  we construct G and a multiplication on it by (3.5) and (3.6). This makes 
& into a semigroup. Notice that 

6 s  6; (3.8) 

where 

6; = G X { O )  6; = G X  K" 

and 6; is a subsemigroup of 6' isomorphic to 6. If E only takes values in K "  then 
E is called regular and it is clearly a 2-cocycle on G with coefficients in K' and 6: 
is the corresponding extension of G by K " .  However, from the point of view of our 
theory of contractions the interest lies in the wcycles that are not regular. 

If E, E'E C2(G, K )  then their product 

S E ' :  G x G -P K ( E E ' ) g , h  - Ea.hEL.h (3.9) 

is also in C'(G, K) and thus C2(G, K )  is a commutative semigroup. 
Suppose that E E C'(G, K )  and 

G 

is the corresponding extension. Further suppose that 

CY:G+& g - (g. a,) a ,EK" 

is some section. Then analogously to (3.3), computing a ( g h )  and a ( g ) r r ( h ) ,  

E:,ha#h = E#,hasah (3.10) 

so we have a new weak 2-cocycle 

A I-cochain on G is a map 

a : G + K .  

(3.11) 

(3.12) 

It is regular if a ( G )  c K". If a is regular then we can define da E C'( 0, K)  by 

da8,h = agaha;;h'. (3.13) 

The set of 2-cocycles of this type form a subgroup B'(G, K )  of C'(G, K). 

isomorphism 
I f  eEC' (G,K)  and a is a regular I-cochain then, with E ' : = &  da, we have an 

rp : & e ' +  6. over G (3.14) 
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given by 

In fact. 
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G = G  

d ( g ,  c ) ( s ' ,  e'))  = &g', ~h,, ,cc')  = rpkg', a , a , ~ E g , , 4 ~ c c ' )  

= &g', a g a g . E g . , 4  = d ( g ,  c ) ) d ( g ' ,  c ' ) ) .  (3.15) 

The import of (3.11) and (3.14) is that multiplying acocycle E by an element of 
B2(G, K)  is equivalent to choosing a different section of G". In the examples we make 
a free use of this in classifying cocycles. 

More formally, we define an equivalence relation - on C2 by 

e ' -  E if and only if E ' =  E da  (3.16) 

for some regular I-cochain a. It is easy to see that 

€ 3  E2 E : - E ; + E , E :  - E ~ E ; .  (3.17) 

Thus we may form the quotient semigroup 

H2(G,  K ) : = ( C 2 ( G , K ) / - ) .  (3.18) 

We are primarily interested in H 2 ( G ,  K ) .  
In spite of appearances the theory of semigroup extensions 6' is considerably 

more complex than the corresponding theory of group exjensions. For example, 6' 
need not have an identity element and the subgroup G ; ,  which is rather like a 
'sink', has no counterpart in group theory. 

Lemma. H : =  6; is characterized in 8' by the following properties: 
(i) 
(ii) HG' = H. 

is an isomorphism onto G; 

Prooj Clearly 6; satisfies (i) and (ii). Conversely let H satisfy ( i fand  (ii). Then from 
(i) each L E  H is uniquely expressible as (h, a ( h ) )  where h = 7 i , ( h )  and a ( h )  is some 
element of K. But for ( g ,  c )  E G', 

(h ,  a ( h ) ) ( g ,  c ) = ( h g ,  Eh.ga(h)C)=(hg, a ( h g ) )  

by (ii). Thus a ( h g )  = eh,,a(h): independently of C E  K .  Thus a ( h g )  =O.  Setting g =  1 
U gives a ( h )  = O  so (h ,  a ( h ) ) E  Gi .  

In  the special case that K = W or C we may topologize C2( G ,  K )  using the metric 

I IE-E ' l I=  SUP IIEg.h-E6hll. 
( s . h ) s G x G  

Evidently C2 is a closed set. 
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We say that 

E E c2 is a limit cocycle or Wigner-{non$ cycle (3.19) - 
if E €3 (the closure of B2 in C2); E is a non-trivial limit cycle if E E ( B2\B2). 

Proposition. Suppose that G is a finite group of order N and 

E = lim &in) E i ~ ~ E  ~2 
n - m  

is a non-trivial limit cocycle. Then E is not regular. 

Proof: We write e y =  ay)aF'/a!$', g ,  h E G. If limn-, a:'= ti, # 0 exists for each 
g E G then evidently 

Suppose that E is regular. With h = 1 we obtain O #  E*,, =limn,, a',"'. Let gE G 
have order k Then for some a # 0 

= @ih/agh and E E E'. 

and hence 

and so pp := lim,,-m(agl)k 20 exists. 

roots oi i in K.  Tnen there is a map 
Let y, be any fixed kth-root of & for each g, and let U,  be the group of Nth 

f,:Z++ U ,  

{ & . ( n ) 4 " ) I n  + Y ~ .  

so that 

Since G and U ,  are finite there is an infinite subsequence {f ,(n)a:'}n.s on which 
f , ( n ) = r ,  is independent of n. Thus ( f , a ~ ' ) , , . 3  converges to y,. 

Now 

Thus U 

Up until now we have not required that our extension semigroups G, be commutative. 
In the sequel we will wish this to  be true. This amounts to the requirement 

= t iZt ih/ ish where tig := fi'y,, and therefore E is trivial. 

Es,h = &h.g for aii g, h E G. (3.20) 

The set of 2-cocycles of this form is denoted by C:( G, K ) .  We clearly have B 2 c  
C:(G, K )  and hence a subsemigroup 

H:(G,  K )  = (C:(G, K ) /  - H2(G, K ) .  (3.21) 
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4. Contractions of Lie algebras 

Let S be a commutative semigroup. We let S-Lie(K) denote the category of all Lie 
algebras over K that are graded by S, namely 

LES-Lie (K)oL= @ L, 
S S S  

for some subspaces L, of L and 

[Ls, L I E  L,, 
with morphisms being Lie algebra homomorphisms that preserve the grading (i.e. for 
L, L'€S-Lie(K), q : L +  L' should satisfy &c L:), It was shown in [16] that for a 
simple Lie algebra the grading semigroup is a group. 

Let G be an Abelian group and let E E C:(G, K ) .  We define a functor r. on 
G-Lie(K) as follows: for L€G-Lie(K),  Le:=T,(L) is the Lie algebra with 

(i)  vector space structure equal to L 
(ii) multiplication defined by L 

Lx, Y l s  = Eg,h[x ,  y1 g, h E G, x E L,, y E Lh. (4.1) 
The skew symmetry and the Jacobi identity are immediate consequences of E E  

C:( G, K ) .  It is clear that if L, L'E G-Lie(K) and q :  L +  L' is a homomorphism then 
there is a canonical homomorphism 

re(q):Le+L'c. (4.2) 

Remark. The requirement that E E C:(G, K )  is, from a generic point of view, a 
necessary condition for (4.1) to work. 

Indeed, let E : G x G + K be an arbitrary map and use (4.1) to construct an algebra 

(4.3) 

(4.4) 
If we assume that [x, y ]  # 0 and the pair [x, [ y ,  z ] ]  and [y ,  [ z ,  x ] ]  are linearly indepen- 
dent then (3.4) and (3.20) follow and E E C:(G, K ) .  

If E, E ' E  C:(G, K )  and E ' -  E then the functors r, and r: are naturally equivalent, 
i.e. for each L E  G-Lie(K) there is an isomorphism 

L" from L. Suppose that L' is a Lie algebra. Then for x E Lg, y E Lh, z E Lk we have 

Ep.h[x, Y l  = Lx, y 1 e  = - [y ,  

E&hk&h,k[& [ y ,  z l l + E h . k g E k g [ Y ?  C z ,  X l l + E X . g h E g , h [ z ,  [ x , y l l = o .  

= - E h , g b ,  X I  

and 

p L : r m + r m  (4.5) 
so that whenever p : L+ L' is an isomorphism we have 

rC, (L)  - r m  
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It is interesting to see what the functor r, means when E is a limit cocycle. Then 

with regular 1-cochain a:'. The map x U ar 'x ,  x E L,, g E G, is an isomorphism 
between L"'" and L. But in the limit we have 

and in general L" ?+ L. For instance, if G is finite and E is non-trivial (3.19), then by 
the proposition ekh will vanish for certain g, h whereas E ~ L  # 0. 

The process of contraction by limits of boundary cocycles is the standard definition 
found in literature [ 1-31 called the Wigner-lnonu contraction. Thus these standard 
contractions are those coming from the elements of ( E 2 / - )  in H:(G, C). 

Definition. A contraction r, is of continuous type if E E ( E 2 /  -). It is of discrete type 
otherwise. 

Thus we can observe that the Wigner-Inonu contractions arise as limits of the coboun- 
daries of the grading group which in almost all cases in the literature has been the 
cyclic group of two elements. This is only a fraction of the possibilities if one admits 
E to be any 2-cocycle of the grading group. 

It is interesting to observe that given L and its contraction L' there is a canonically 
associated Lie algebra L' that has both as homomorphic images. Namely, we define 
a vector space 

- 

where L(g,aj is a vector space isomorphic to L, c L. We denote the element of &,, 
associated by this isomorphism to x E Lg by (x ,  a ) .  We define multiplication in L' by 

[ ( X , a ) , ( Y , b ) l = ( [ x , Y l . E p . h a b )  (4.8) 

for X E  L,, y E Lh; a, b E K. This indeed defines a Lie algebra structure on 2 and we 
have homomorphisms 

T : b L  ( x ,  a )  - x (4.9) 

and 

T e : P + L c  ( x , a ) - a x .  (4.10) 

The map A e :  L+ 2 is a functor from G-Lie(K)+ &-Lie(K). 

5. Contractions of modules 

We now show how to define a theory of contractions of representations in terms of 
Lie algebra contractions. Let M be a non-empty set and let V be a vector space over 
K. We say that V is M-graded if 

V = @  v, 
"Is M 
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Let G be a group and suppose that G acts on M, i.e. there is a map 

G x M + M  (g ,  m )  - g .  m (5 .2)  

such that 

g . ( h . m ) = ( g h ) . m  g, h E G, m E M. (5.3) 

Suppose that LE  G-Lie(K). We define the category M-Mod(L) to be the set of all 

(9 
(ii) L,. vmc vgm g c G , m E M  

L-modules V that satisfy 

V is graded by M 
(5.4) 

together with the set of all L-module maps that preserve the M-grading. 

maps 
Let G and M be BS Z ~ G W  2nd !et i E C:(G, K ) .  wc d~fiiie the sei F(K, e j  of 2:: 

J I : G x M + M  ( 5 . 5 )  

such that 

Eg,h$zh.m = +z.hm$h,m = $g.m$h,gm. (5.6) 

This is the multiplicative form of (2.16). Aspecial case ofthis is G = M, $ = E whereupon 
(5.6) is simply (3.4). 

Given + E  F ( M ,  E )  and V E  M-Mod(L) we define V* to be the L'-module with 
(i) vector space structure equal to V; 
(ii) action of L' defined by 

* 
x . u = & , , x .  v x E ( L e ) * , u E  v",. 

We call V' the )-contraction of V relatiue to E. 

(5.7) 

Remarks. 
(1) Just as in the remark in section 4, one can see that from a generic point of 

view a map ( 5 . 5 )  will provide a module structure for L" via (5.7) if and only if (5.6) 
holds, i.e. J,  E F ( M ,  E ) .  

(2) In sections 2 and 6 we have determined all the possible +contractions as E 

runs over all elements of H:( G, C) for G = Z, and Z, respectively. 
(3) When M = G, @ = E and V = L we obtain the adjoint representation of L' as 

a contraction of the adjoint representation of L. 
(4) The association V +  V* is in fact a functor 

r f :M-Mod(L)+ M-Mod(L'). 

Let $ E  F ( M ,  E ) .  We define 

M * : = M x K  

and define an action of C? on M* by 

* 
(g ,  a )  . (m,  c )  = ( g '  m, 

It follows from (5.6) that it is indeed an action. 

( 5 . 8 )  

(5.9) 
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Observe also that fi* admits a K-action: 

4(m, c )  = ( m ,  4c) 

and that for all g ^ ~  e', 61 E M*, a E K, 
(5.10) 

* 
g?(46I)=4(g. 6I). (5.11) 

a:G-+&' g - k , 1 )  (5.12) 

p : M + M *  m - (m, 1) (5.13) 

Now one may look at the pair (E, I)) in terms of the two sections 

for we have 
* 

a ( d .  P(m)=&,P(gm) (5.14) 

i.e. 
* 

(g. 1) . (m. 1) = ( g .  m, &,.,I. (5.15) 

Just as in section 3 we defined equivalent (cohomologous) cocycles by 1,ooking at 
the effect of changing sections, so we obtain the notion of equivalence pairs ( E ,  #) by 
changing the sections for G and M. 

Suppose that 
a : G + K "  (5.16) 

b : M + K '  (5.17) 

are arbitrary maps and we define new sections 

at: G +  e= 
0': M-* M* 

g - (g ,  4,) 

m - (m, b,) 
and define +': G x M + M by 

* 
a ' k )  . PYm) = & P ' ( g .  m). (5.18) 

Thus 
* 

(g,  4,) . (m, b,) = +;,,(S. m, b 8 A  (5.19) 

and we have 

(5.20) 

Recall also (3.11). One sees that + ' E  F ( M ,  E ' )  so 6'' is &;,,-set. In that case we have 
the isomorphism q :  of (3.14) and also an isomorphism 

A :  M*'+ M* A : (m, c )  - (m, b,c) 
and the commutative diagram 

(5.21) 

Given E, E'EC:(G,K), $ E F ( M , E ) ,  +'EF(M,E ' ) ,  we write ( & , + ) - ( E ' , $ ' )  if a 
and b of (5.16) and (5.17) exist so that E = E d a  and (5.20) holds. 
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We return to contractions. Suppose that (E', $')-(E, g). For each Lie algebra 
L E  G-Lie(K), the contractions Le' and L' are canonically isomorphic (4.6) and by 
this isomorphism we may identify them. Given V E  M-Mod(L), let 

v*':= r:,'( v) v* := r:( v). (5.22) 

The map 

U" : v@ -+ v* 
uY : v U b,u U €  v, (5.23) 

is an isomorphism of Lie modules (L" and L' being identified) by (5.20). 
To summarize: in determining all contractions ( E ,  $) we are free to renormalize 

the grading subspaces LE of L by non-zero constants aE, g E G, and similarly renormalize 
the grading subspaces V, of V by non-zero constants b,, m E M. Full use of this is 
made to simplify the results of the examples in sections 2 and 6. 

Analogously to (4.7) we can define a lifting functor 

A:: M-Mod(L) + &-Mod(i'). (5.24) 

For each V E  M-Mod(L) define 

where V(,,ml is a vector space isomorphic to V, by some map 

( v , a ) c * v ~  V,. 

Then t* is made into an i'-module by 

* 
(x, a )  . (0, c) = (x .  v, (5.26) 

for x E LE, U E V, and a, c E K .  Thus we have maps 

h : t * + V  ( V , C ) H U  

A * :  P*+ V" ( u , c ) + + c u  
(5.27) 

which are compatible with(4.9) and (4.10). In other words V and V' may be seen as 
homomorphic images of V*. 

It is also possible to contract the universal enveloping algebra of a Lie algebra 
L E  G-Lie(K). Let E E H:(G,  K ) .  The grading of L gives U ( L )  a G-grading 

U =  @ U,. (5.28) 
k-GG 

The contraction U " ( L )  is: 
(i) U e ( L ) =  U as a vector space; 
(ii) multiplication is defined by 

(5.29) 

Clearly U'(L)  is not in general the universal enveloping algebra U ( L ' )  since may 
be zero, but U ( L " )  has no zero divisors. Furthermore, L ' c  U ( L )  may not generate 
U'(L)  as an algebra. Nevertheless, if $ E  F ( M ,  E )  and V" is the contraction of the 
L-module V then V* is naturally a U'(L)  module via 

* 
x ' y Eg.hXY X E  U,,YE U". 

(5.30) * 
U . v = $E,,uv u E U g , U E V , " .  
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As an example of what is involved when inferring information about U‘(L) from 

Suppose that 
U(L), let us consider the question of quadratic Casimir operators. 

c = 2: X8 (1)  y,-t (0  g E G, x$) E Ls, yr11E L8.1 (5.31) 

where g runs over G, is a Casimir operator of L. We define C“ to be defined by the 
same expression as seen in U’(L) .  Then for z E Lh, 

8. i 

E ~ , ~ E ~ ~ ~ - ~  is constant for all g E G 

we have 

[c: z] = 0 

and C‘ is a central element of U‘(L).  

(5.32) 

(5.33) 

6. Contractions of &-graded representations of Lie algebras 

Consider any &graded Lie aigebra i, 
L =  LOO.. .O Ln-l (6.1) 

with none of the commutators of grading subspaces identically equal zero, 

O f  LL,, L k l r  L,+k j ,  k, j f k  (mod n) .  (6.2) 

Treat Z,, as a set and let H. act on E. by j .  k :=  j f k  (mod n). Suppose that 

V =  VoO ... OV.- ,  (6.3) 
is E,-graded L-module in E,-Mod(L). Let E E C2(E,, K). 

The grading is preserved during a contraction. Hence just as in (2.13), the contracted 
transformation L f V i s  described in terms of LV before the contraction and the matrix 
@E C”-” of the contraction parameters for V. i n  general, one has 
. -”- 

Ip 
L .  v= 

JlOOLO 

@ “ - I  . O L  I 

@ikLj 

@I+ I ,  kLj+ I 

@j-l,k+lLj-l 
@j,k+lLj 

where the subscripts of Q are read modulo n. An example, n =2, of (6.4) is (2.13). 
For a fixed E, the matrix @ = ( @jk) is a solution of the system of quadratic equations 
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(2.16) or, equivalently, (5.6 . A useful strategy for solving such a large number of 
equations is described next, 'a ssuming that a contraction E is fixed. 

Among the equations of (2.16) consider first the n equations 

O S m c n .  (6.5) EW*om = *om 

For any contraction we have either E ~ =  0 or em= 1. In the first case km = O  for 
0 s m < n, in the second one +om = 0 or 1. 

2 

..,... wirn a iixed soiuiion of equations (6.5j one considers ihe subset 

EOJ*Jm = *,m*o,j+m = *om*Jm O <  j <  n, O S  m < n (6.6) 
of equations (2.16) from which some parameters #j,,, are not determined at all and 
some are found to be zero. More precisely, 

(6.7) 

for O < j <  n. Solutions of (6.5) and (6.7) are then used to simplify the remaining 
equations of the system (2.16) before solving them directly. 

Let us now determine H,-contractions of V. The E,-contractions L' of L were 
found in 1151. There are eight continuous contractions 

1 0 0  1 0 0  0 1 0  

and five discrete ones 
1 0 0  1 0 0  1 0 0  

(6.9) 

In most cases of interest the grading subspaces L, and L2 of E,-grading of L could 
be interchanged, therefore we will consider only one of each pair of cases in (6.8) and 
(6.9) which differ by interchange L,- L2. 

The system of equations (2.16) which we have to solve for n = 3 consists of 27 
equations of the following form (for m = 0,1,2): 

%&om = G m  (6.100) 

EOl*lm = *lm*o&1 = *,m*om (6.10b) 

E02*ZZm = *2m*0.m+2 = *2m*om (6 .10~)  

Ell*2m = * l m h . m + l  (6.10d) 

E22*lm = *2m*z2.m+2 (6.10e) 

E12*0" = *2mS1.n+2 = *"2.m+l. ( 6 . W )  

0 0 0  1 0 0  
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The system of equations (6.10) is invariant under the cyclic permutations of the columns 
of I). Its solutions are shown in table 2. 

R V Moody and J Patera 

For n = 3 we have from (6.4) 

(6.11) 
*wLo *21L2 *(12Ll *wLaVu+ 921LZVI f *l2Ll v2 

* l u ~ l ~ a + * , , ~ o ~ , + * ~ ~ L , v 2  

*2oL2 *llLl *02LO *2oL2 va f *,,Ll v, + *a2Lo v2 
The solutions of (6.10a) are listed in the following table with m = O ,  1,2. 

L1 0 0 0 0 
b 1 I 1 1 
c I 1 0 0 
d I 0 1 1 
e 1 0 0 0 

(6.12) 

The solutions of (6.10b) and ( 6 . 1 0 ~ )  are given in (6.7). 
The matrices E of (6.8) and (6.9), used in (6.10), together with (6.12) and (6.7) for 

n = 3  lead to the following simplified versions of equations (6.10d)-(6.10f) with 
m=O,1,2: 

solutions: A, C, E, F (6.13a) 

solutions: A, B, C, D, E (6.136) 

I I I 

*h = *l,"*,.m+I 

0 = *2m*2,m+2 

o= h " * , , m + 2  

o= *,,"h"+, 
o= *2m$22.m+2 

0 = *2m*l,m+2 

O =  *Im 

0 = *2m*2,m+2 

0 = * 2 , " h " + 2  

solutions: A, B ( 6 . 1 3 ~ )  

solutions: A, C. (6.13d) { l e 2  in ( 6 . 1 3 ~ ) )  

The solutions A, E , ,  . , , E  in (6.13) are the following matrices @ = ( $ j k ) :  

A = ( i  * i) B = ( i  C = ( i  6 E) 
(6.14) 

D = ( i  i i) E = ( :  a i) F = ( i  i). 
The top row is arbitrary because it does not enter (6.13). Also (I and p are different 
from 0 but otherwise are any complex numbers. The matrices E, C, D, E, F with 
cyclically permuted columns are also solutions of (6.13). 
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Table 2. The &graded contractions of representations of Z,-graded contractions of Lie 
algebras. The Lie algebra contractions is given by E. The contraction of representation is 
given by the corresponding $ or, equivalently, by L . V in the format of equation (6.11). 
Out of three matrices $ which differ by cyclic permutation of columns only one is shown. 

* 

E No. 4 LT v 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

11.2 

11.3 (% A) 
11.4 (;::) 1 1 0  
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Table 2. (continued) 

e 

f ; ;) 
0 1 0  

(a 8 i) 

t H 8) 

i i) 

No. 9 

11.6 (i i i) 
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Table 2. (continued) 

2241 

E No. @ L !  v 

0 0 0  

V1.8 

V1.9 

f ;) VII.1 

VII.2 

VIL3 

V11.4 

VIIS 

VI1.6 

(: : :) (? Z0 ')(i) 
( A  : ") (? 0 L, " ")(?) 0 v, 

(" ") ( o  L . 0 0  L, o)(?) 

k :  :) ( "  : :)(d 
k ; ;) (: :)($) 
(8 ; !) (" : "(?) 

0 0 0  O O L ,  

0 0 0  

0 0 0  0 0 0  v, 
L O O  Lo 0 0 v, 

0 0 0  0 L* L,  

0 0 0  v, 

1 1 0  Lo 0 0 

0 0 0  0 0 0  0 0 Lo 
0 .) VIII.1 (; : ;) (. Lo o ) (  $) 

v111.2 (A : :) (; ; "( ?) 
0 0 0  Lo v 2  

V111.3 

V111.4 
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Table 2. (continued) 

E No. g L !  v 
L, 0 0 v, 

V111.5 f i) (0 0 0 0 O ) [  0, ,"a, VI) 
Lo 0 0 

V111.7 

There remains the case-by-case analysis of the individual contractions and further 
restriction of the range of values of a and p in (6.14) by renormalization of subspaces 
\ ~ ~ , - . - n  1 1  " - ~ - - ~ : - - . - , ~ , n , - - ~ - - ~ - : ~ , . . - , - ~ . ~  --_- A: L --"--- r ?.-A , L, 'LC'Y,U,,,& ,U I,.&", a,," p"U"Lu1J a , s u  L1.C gL.a"llrg wvJp'lcG;a Lk, rr - U, 

1, 2, according to (3.11). We illustrate this next in one case; table 2 contains all the 
results. 

,,. - ", 

Example 2. Consider the contraction L' given by 

& = l o o .  il : :I 
In this case (6.10) becomes 

*o:m = *im 
*I.", = *lm*LO,m+l = * lm+om 

*2 ,m = J12m*0.m+2= *2m*om 

o =  + l m * l , m + ,  

0 = *2m*2.#"+* 

o= *2m*Ll.m+2. 

(6.15) 

First put = 1 for all m, which is case b of (6.12). This reduces (6.15) to the last 
three equations, i.e. to the system (6.136) whose solutions are A, E, C, 0, E of (6.14) 
together with the cyclic permutation of columns in E, C, 0, E. Let us write out one 
solution of type E corresponding to m = 1. In that case we have + as the matrix E 
with one step cyclic permutation of columns: 

1 1 1  

P O 0  

*=(o a .). (6.16) 
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In the form (6.11) we write the contracted graded linear transformations as 

(6.17) 
Lo 0 Lo vo 

Let us compare (6.17) with similar solutions for m = 0 and 2 respectively: 

(6.18) 

(6.19) 

Lo 0 Lo vo 

One can verify directly that (6.17)-(6.19) are, indeed, representations of the contrac- 
ted Lie algebras Le. Let us do this just for the commutators 

[Lo, L11, G L ,  [ L , ,  L2Ir = 0 

and for the representation (6.17). We have therefore Lo, L ,  and L, respectively as the 
matrices 

0 0 Lo 0 a L ,  0 m 2  0 0 

Consequently, 

* * 
[Lo,L,I;  V = ( L o L , - L , L o ) ;  v 

0 

Similarly, we find 
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The parameters (1 and p in (6.171, (6.18) and (6.19) can be transformed to 1 without 
loss of generality, if they are different from zero. That is achieved by renormalizing 
the corresponding grading subspaces. 

Among the representations (6.17)-(6.19), only one of them with a = p  = 1 is shown in 
table 2. In order to complete the contraction of representations of L' in our example, 
one would first need to complete the case b of (6.12) by considering also the solutions 
of types A, B, C, D in addition to E, and then find the solutions for the cases e, d, e 
of (6.12). 

Example 3. Consider an  example of a B3-graded affine Lie algebra A, generated by 

e( . )=eOt" h") =fO f" h( . ,=  hOt" e (6.20) 

satisfying the commutation relations 

[ X W ,  YWI = [x. Y I ( ~ + ~ ) +  m&+,o(xly)fi (6.21) 

where (xly) is the Killing form in the three-dimensional simple Lie algebra generated 
by e, f; h with the commutation rules 

[e,f 1 = h [h, e] = 2e [ h, f l  = -2J (6.22) 

We choose the Z,-grading subspaces Lo, L, and L, of A, spanned by the following 
generators, 

L o = l h ( 3 k ) ,  e(3r+2),f~3~+l),Zl 

L,  = { h ( 3 k + l ) .  e ~ ~ ~ ) . f ( ~ ~ + d  (6.23) 

L 2 =  t h ( 3 k + 2 ) ,  ~ O X + ~ ) , ~ ( ~ X J  -oo<k<m. 

We make the usual identification with the generators Eo, E,, Ho, H,, F,, F, of 
the affine algebra 

E,  = e(o) E L,  

Eo=hi)ELo Ho =e- h(o1 E Lo F , = ~ ( _ , ) E  L, 

HI = h(o) E Lo FI =ho) E L2 

Let us take two irreducible representations of A, with highest weights (1  0) and ( 1  1). 
The corresponding representation space V decomposes under the action of Lo, L, and 
L2 into subspaces V,, V, and V, respectively. Our task is to describe Vo, V, and V, 
for the two representations ( 1  0) and ( 1  1 )  and then use them in some of the cases 
listed in table 2. We choose the example considered in (6.17). 

The space V is an infinite direct sum of finite-dimensional subspaces labelled by 
weights of the corresponding representation. A practical way to give V,, V, and V, is 
to indicate the weight subspaces spanning them. 

The first few weights of (1 0 )  and (1 1) are shown in figure 1 in the standard basis 
of fundamental weights. 

The horizontal lines in figure 1 linking two boxes indicate transformations by ho) 
(from left to right) and el,) (from right to left). The vertical connecting lines are due 
to e(-,, (direction down) and A,, (direction up). Since both directions are valid 
transformations, the lines on figure 1 are not oriented. Therefore one can immediately 
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... 

Figure 1. The first few weights of the aEne-A, representations with highest weights (1 0) 
and (1 1). The subscripts indicate the multiplicity of the weight when it is greater than I;  
the overbar is the minus sign. 

izdicste -hick ::.eights of fign:e 1 !ab-! subspace: of Yo, 1: and I%',. Ho~wex:, one of 
them, the highest weight say, has to be assigned arbitrarily (let it be in Vo). 

The contraction of our example is that of (6.17). Hence, we have the annihilating 
actions 

* * * * 
L, . v, = L, 1 v,= L* . v, = L, . v, = 0. 

Now we can redraw figure 1 with the lines correspondingly erased. If transformation 
by AOj, A l j  is non-zero in one direction only, the corresponding line is 
oriented. Results for (1 0) and (1 1) are shown in figure 2. Let us emphasize that there 
are many other transformations possible due to generators other than the four simple 
ones between weight subspaces, but these are not shown in either figure 1 or 2. 

not quite reveal this fact. Note that with the contracted commutation, Eo and E, do 
not generate the positive part of L. Indeed, [E,, [E,, Eol,l, =O.  

+h- ---tm-+i-- h-rl. -a--aoa-+-+in..e ra-9:- :-,4an---n--hIa C i n a a r o  1 ,4--- 
N L * .  L l l l  ~ " I . L ' Y I . I " . L  ""LLl '*Y""*L.LUL'".L" ._.......& .a 'V"V.LLp""YYL*.  I 'a"'* L ""-2 

1. Contractions of tensor product decompositions 

Let E define a contraction for G-Lie and let V and W be L-modules for some L E  G-Lie. 
Suppose that V and W are graded by M and M is a group (we use multiplicative 
notation). We suppose that the G-action on M satisfies 

g .  (m.  n ) = ( g .  m) . n for all g E G, m, n E M. (7.1) 
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Figure 2. The oriented horizontal and vertical lines indicate the non-rem action of e o ) ,  
f io j ,  e,_, , ,  f(,), on the weight subspaces. The Z,-grading of figure I io preserved here; the 
overbar is the minus sign. 

Let + be a contraction of Vcompatible with E. We denote Vconsidered as an Le-module 
by V*. Consider V O W  graded by M in the usual way: 

(VOW),:= 1 V,,,OW, 
mn-p 

Thus we may also contract V O  W to get ( V O  W)". We wish to compare ( V O  W)* 
with all V*O W*. Both are L'-modules. Let U E  V,,,, W E  W,,, X E  L,. Then V O W €  
( V O  W ) t  and 

X '  ( U O W )  = +*.,".x(uO w )  = +,.,"((XUOW)+(UOXW)). (7.2) 

However V O W €  V i 0  Wt. If we use the tensor product action of L' on VOW seen 
in this way we get 

x . (00 w) = x . UO w + UOX.  w = +g,,xuO w + + s , , , u O ~ ~ .  (7.3) 

Unless I&,,," = I&, = +g,n, (7.2) and (7.3) will not in general be equal. 
In order to compare (VOW)"  with V'O W' we need an Le-map between them. 

The above tells us that straight identification will not work without extremely restrictive 
hypotheses on +. Instead we try to construct a map 

(7.4) 

(7.5) 
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We want T to be a L'-map. Let U, w, x be as above, then 

= * , , , ( x u O w + ~ ~ , " 0 O x w )  

(7.7) - - $ z . m ~ , ~ . . x ~ O w +  $ g , n ~ m , z n ~ O ~ ~ .  

Comparing (7.6) and (7.7) we must have (generically) 

Tm.n$z,mn = $g,mTsm.n = $g,nTm.gn. (7.8) 

In particular, equations (7.8) impose no restriction on 7 if the only non-zero matrix 
elements of $ are those given by = 1, for any h E M. In all other cases r is symmetric, 

T 
T = T ,  

An interesting example of this is the case M = G, Jl = E = r. 
In the case of &grading the solutions T of (7.8) are summarized in table 3. 
Consider a decomposition V O  W = @ U ( i )  as L-modules. Assume that each V( i )  

is M-graded by inheritance from VOW, i.e. 

Table 3. Non-trivial &graded contractions of tensor products of two representations are 
given in terms of the matrices 7, solutions of (74, for fixed E (contraction of the Lie 
algebra) and fixed # (contraction of representations). 

* T E 
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Then U (  i ) *  exists. Note that for U E U( i ) :  c ( V O  W)", and for x E LE, 

R V Moody and J Patera 

x .  U = $,,,xu E u(i)&,. 
Thus each U(i)*  is an Le-module. Therefore 

( V O  w)"=$  u(i)* (7.10) 

Now if we denote the image of T by I then I n  U(i)' is an L"-submodule of 
as L'-modules. 

( V O W ) +  and P ( i ) : =  T - ' ( I n  U(i)') is an Le-submodule of V"O W'. Set 

P : = x  P ( i )  and c := T - ' ( o )  =x V,O W" T,,n = 0. (7.11) 

Then we have the sequence of L'-submodules 

V*O w *  3 P 3  CZ(0) (7.12) 

and 

P I C  =$ { ( P ( i )  + C ) /  C ) .  (7.13) 

Example 4. We consider what this looks like in the case of E,-gradings. Suppose that 
V and W are Z,-graded L-modules. Adopting the matrix notation as in section 2, we 
introduce the grading structure explicitly also for the tensor product 

where, as in section 2, we could collapse the last matrix to 

(V0OWo+V,OW,) 
voOwl+v,owo 

if no further operations are required. We express the action of T on V O W  by 

Then we have 

given in terms of matrix multiplications 

Consider the contraction defined by E = (: A) and T = $ = E. Then the matrix notation 
in parallel, 

1 ( v o @ w , + v l ~ w O  
VoO WO 

I = V O  w = voo WO+ VoO w, + VI@ W" = (7.14) 
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Suppose that we have a decomposition V @  W = $ U ( i ) ,  where each U(;) is 
??,-graded from V @  W, 

Then U ( i ) ,  c I and 

= r ; i 3  =: P(i) ' .  (7.15) 

In general, P ( i ) ' #  P ( i ) .  However P(i ) '  is a LE-module since 

i i ( i j ,c  Vo@~Wl+ii l@~Wo if( vo@ -w-, + VI @ iii,j t VI @ -w-, . 
Set 

P ' : = x P ( i ) ' = x  U ( i ) , + V , @ W ,  

= ( V @  W ) ,  + VI0 w, 
= VO@ w , +  VI@ w,+ VI@ w, 

Thus we have the chain of submodules 

V*@ w* , 
I 

P ' = C P ( i ) '  
I 
C 
I 
0 

= V0@ WO 

= SiqiJ 

== V,@ w, I 
(7.16) 

(7.17) 

where m:= (U(;)+ C)/C. The three indicated quotient modules are all L'-modules 
on which L; acts trivially. Thus we obtain considerable information about the tensor 
product of the contracted representations. 

Let us look at a particular example of this, namely L = sI(4, C) with the Z,-grading 
defined by assigning degree 0 to the simple roots *a, and *a2 and degree 1 to the 
simple roots faj.  Then Lo = sI(3, C) x U where U is one-dimensional and L' has a Levi 
decomposition 

(7.18) 

where 

A,:= a c A  a = ~ c , a j , c , = 1 m o d 2  . ( I  3 
Any irreducible representation in congruence class 0 (weight system inside the root 
lattice of sI(4, C)) is compatibly &-graded and has an €-contraction. For example the 
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Table 4. Branching of  sI(4, C) representations to $10, C) x U representations. The entries 
in the left column are sI(4.C) weight labels and those in the top row are sl(3.C) weight 
labels. The table entries consist of the sI(3, C) multiplicities together with the appropriate 
u-labels. Thus for instance in (2 IO) the representation (2 0; -4) occurs once. 

( 2 0 2 )  l ; o  l ;o  l ;o  1;-4 1;+4 I ;  -8 1; +8 I;  -4 1; +4 
(0 121 1; 0 1;  0 I ;  -4 1; +4 I ;  +8 1; +4 
(2 10) l ; o  l ; o  1;+4 1;-4 I; -4 I ;  -8 

2(1 0 I )  2;o 2;o  2; -4 2;+4 
(0 2 0) 1; 0 1;+4 I ;  -4 
(000) 1; 0 

15-dimensional representation with weight labels (1 0 1) decomposes relative to Lo as 

(1, 1; 0) -t (0,O; 0) + (1,O; 4)+ (0, 1; -4). -- 
dim 9 dim 6 

(1  0 110 ( I  0 I), 

(7.19) 

In order to determine (7.17) we decompose (1 0 l)O(lO 1) as an sI(4, a))-module and 
decompose it as an L,-module into even and odd parts. Thus 

(1 Ol )O( lO  1 ) = ( 2 0 2 ) 0 ( 0 1 2 ) 0 ( 2  1 0 ) 0 2 ( 1 0 1 ) 0 ( 0 2 0 ) 0 ( 0 0 0 )  

decomposes according to table 4, and ., n .., v , v  w ,  
(2, 1; 4) + ( l ,  2; -4)+(2,0; -4)+ (0,2; 4)+2( 1,O; 4)+2(0, 1; -4) 

in this example. 

8. Cnrc!l.A_i??g K?E!2r!ii 

It is worthwhile pointing out again that the product of two contractions is also a 
contraction. For more complicated grading groups this provides a useful tool for 
producing new contractions from old ones. 

In this paper we have assumed in developing our equations that we are in the 
eenerir _.._.._ r a w  Thic _..._ doe< _ _ _ _  not ..-. mean _____.. that the .~~~ Lie ~~~ algebras and representations involved 
must themselves be generic for the contractions to work. Rather the generic case 
imposes the maximum number of conditions on the parameters. Lie algebras and/or 
representations which are not generic will admit contractions beyond those appearing 
in our classification. 
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